
Lecture 8: Unsupervised learningLecture 8: Unsupervised learning
CME/STATS 195CME/STATS 195
Lan Huong NguyenLan Huong Nguyen
October 23, 2018October 23, 2018

What is unsupervised learning?

Dimensionality reduc�on with PCA

Cluster Analysis:
k-means Clustering
Hierarchical Clustering

Course wrap-up

ContentsContents

Unsupervised LearningUnsupervised Learning

Unsupervised LearningUnsupervised Learning
Deals with a task of inferring latent (hidden) pa�erns and structures
unlabeled data.

The goal is to understand the rela�onships between features or among
observa�ons.

There is only and no , i.e. there are no special variables such as response
or output variables, and no prespecified classes labels for the observa�ons.

X Y

Unsupervised learning encompasses:
dimensionality reduc�on, manifold learning
e.g. PCA, MDS, Isomap, Diffusion Map, t-SNE, Autoencoder
clustering e.g. k-means, hierarchical clustering, mixture models
anomaly detec�on
latent variable models

It can handle the tasks such as:
image segmenta�on,
image clustering / automa�c labeling,
visualiza�on of high dimensional data e.g. gene expression,
finding cell subtypes.

Dimensionality Reduc�onDimensionality Reduc�on

Dimensionality Reduc�onDimensionality Reduc�on
Most of modern datasets are high-dimensional e.g. gene�c sequencing,
medical records, user internet ac�vity data etc.
DR or feature extrac�on methods can reduce the number of variables.
The methods can be used to:

compress the data
remove redundant features and noise
increase accuracy of learning methods by avoiding over-fi�ng and

Common methods for dimensionality reduc�on include: PCA, CA, ICA, MDS,
Isomaps, Laplacian Eigenmaps, tSNE, Autoencoder.

the curse of dimensionality

http://statweb.stanford.edu/~donoho/Lectures/AMS2000/Curses.pdf

Principal Component Analysis (PCA)Principal Component Analysis (PCA)

Source: ESL Chapter 14

https://web.stanford.edu/~hastie/ElemStatLearn/

Maximal variance Projec�onMaximal variance Projec�on

For , is a centered data matrix.
PCA is an eigenvalue decomposi�on of the sample covariance matrix:

X ∈ ℝn×p = (X −)X ̃ X̄

C = = V
1

n − 1
X ̃
T
X ̃

1

n − 1
Σ

2V T

or (equivalently) a singular value decomposi�on (SVD) of itself:X ̃

= UΣX ̃ V T

In the above and are orthogonal matrices andU V

 is a diagonal matrix.Σ

The projec�on of X into the space of principal components is called a
component scores:

T = V = UΣ V = UΣX ̃ V T

The weights of the variables in the PCA space, , are called loadings.V

Dimensionality reduc�on with PCADimensionality reduc�on with PCA
PCA finds a set of uncorrelated direc�ons (components) that are linear
combina�ons of the original variables.
These components sequen�ally explain most of the varia�on remaining
subsequently in the data.

Reduc�on occurs when the top components are kept and used to
represent the original -dimensional data.

The -dimensional approxima�on of is:

p
p

k < p

p

k X

=Tk UkDk

where is a matrix with first columns of and is the diagonal matrix containing
first diagonal terms of

Uk k U Dk

q D

The US crime rates datasetThe US crime rates dataset
The built in dataset includes informa�on on violent crime rates in the US in 1975.

head(USArrests)

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

Mean and standard devia�on of the crime rates across all states:

apply(USArrests, 2, mean)

Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232

apply(USArrests, 2, sd)

Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385

PCA in RPCA in R
In R, the func�on prcomp() can be used to perform PCA.
prcomp() is faster and preferred method over princomp(); it is a PCA
implementa�on based on SVD.
pca.res <- prcomp(USArrests, scale = TRUE)

The output of prcomp() is a list containing:
names(pca.res)

[1] "sdev" "rotation" "center" "scale" "x"

The elements of prcomp output are:

The principal components/scores matrix, with projected samples
coordinates.

T = UΣ

head(pca.res$x)

PC1 PC2 PC3 PC4
Alabama -0.9756604 1.1220012 -0.43980366 0.154696581
Alaska -1.9305379 1.0624269 2.01950027 -0.434175454
Arizona -1.7454429 -0.7384595 0.05423025 -0.826264240
Arkansas 0.1399989 1.1085423 0.11342217 -0.180973554
California -2.4986128 -1.5274267 0.59254100 -0.338559240
Colorado -1.4993407 -0.9776297 1.08400162 0.001450164

These are the sample coordinates in the PCA projec�on space.

The principal axes matrix, , contains the eigenvectors of the covariance
matrix. A related matrix of loadings is a matrix of eigenvectors scaled by the
square roots of the respec�ve eigenvalues:

V

L =
VΣ

n − 1‾ ‾‾‾‾√

The loadings or principal axes give the weights of the variables in each of the principal
components.

pca.res$rotation

PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432

pca.res$rotation

PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432

PC1 places similar weights on Assault, Murder, and Rape variables, and a
much smaller one on UrbanPop. Therefore, PC1 measures an overall
measure of crime.
The 2nd loading puts most weight on UrbanPop. Thus, PC2 measures a
level of urbaniza�on.
The crime-related variables are correlated with each other, and therefore are
close to each other on the biplot.
UrbanPop is independent of the crime rate, and so it is further away on the
plot.

The standard devia�ons of the principal components (square roots of the
eigenvalues of)X ̃

T
X ̃

pca.res$sdev

[1] 1.5748783 0.9948694 0.5971291 0.4164494

The centers of the features, used for shi�ing:
pca.res$center

Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232

The standard devia�ons of the features, used for scaling:
pca.res$scale

Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385

A scree plot can be used to choose
how many components to retain.

Look for “elbows” in the scree plots

Discard the dimensions with
corresponding eigenvalues or
equivalently the propor�on of
variance explained that drop off
significantly.

PCA eigenvalues/variances:
(pr.var <- pca.res$sdev^2)

[1] 2.4802416 0.9897652 0.3565632 0.1734301

plot(pca.res)

Scree plotScree plot

Percent of variance explained:
install.packages("factoextra")
library(factoextra)

Percent of variance explained:
(pve <- 100*pr.var/sum(pr.var))

[1] 62.006039 24.744129 8.914080 4.335752

fviz_eig(pca.res) + theme(text = element_text(size = 20))

Samples PlotSamples Plot
Each principal component loading and score vector is unique, up to a sign flip. So
another so�ware could return this plot instead:

fviz_pca_ind(pca.res) + coord_fixed() +
 theme(text = element_text(size = 20))

fviz_pca_var(pca.res) + coord_fixed() +
 theme(text = element_text(size = 20))

fviz_contrib(pca.res, choice = "var", axes = 1)
 theme(text = element_text(size = 20))

Features PlotFeatures Plot

BiplotBiplot
A biplot allows informa�on on both samples and variables of a data matrix to be
displayed at the same �me.

fviz_pca_biplot(pca.res) + coord_fixed() +
 theme(text = element_text(size = 20))

ExerciseExercise

Go to the “Lec8_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 1.

Cluster AnalysisCluster Analysis

Cluster AnalysisCluster Analysis
Clustering is an exploratory technique which can discover hidden groups
that are important for understanding the data.

Groupings are determined from the data itself, without any prior knowledge
about labels or classes.

There are the clustering methods available; a lot of them have an R
implementa�on available on .CRAN

https://cran.r-project.org/web/views/Cluster.html

To cluster the data we need a measure of similarity or dissimilarity between
a pair of observa�ons, e.g. an Euclidean distance.

k-meansk-means
k-means is a simple and fast itera�ve reloca�on method for clustering data
into dis�nct non-overlapping groups.
The algorithm minimizes the varia�on within each cluster.

k

Source: link

http://shabal.in/visuals/kmeans/3.html

k-means drawbacksk-means drawbacks
The number clusters must be prespecified (before clustering).

The method is stochas�c, and involves random ini�aliza�on of cluster
centers.

This means that each �me the algorithm is run, the results obtained can be
different.

k

The number of clusters, , should be chosen using sta�s�cs such as:k

Gap Sta�s�c

Silhoue�e sta�s�c

Calinski-Harbasz index

link

link

link

http://www.web.stanford.edu/~hastie/Papers/gap.pdf
https://en.wikipedia.org/wiki/Silhouette_(clustering)
http://www.biomedcentral.com/content/supplementary/1477-5956-9-30-S4.PDF

Image segmenta�onImage segmenta�on
One of the applica�on of k-means clustering is .

Here we use a picture of a field of tulips in the Netherlands downloaded from
.

image segmenta�on

here

https://www.r-bloggers.com/r-k-means-clustering-on-an-image/
file:///home/lanhuong/MEGA/Teaching/cme195_intro_to_R/cme195.github.io/assets/lectures/%22http://www.infohostels.com/immagini/news/2179.jpg%22

Impor�ng image to RImpor�ng image to R
First, we download the image:
library(jpeg)
url <- "http://www.infohostels.com/immagini/news/2179.jpg"
dFile <- download.file(url, "./Lecture8-figure/Image.jpg")
img <- readJPEG("./Lecture8-figure/Image.jpg")
(imgDm <- dim(img))

[1] 480 960 3

The image is a 3D array, so we will convert it to a data frame.

Each row of the data frame should correspond a single pixel.

The columns should include the pixel loca�on (x and y), and the pixel
intensity in red, green, and blue (R, G, B).

Assign RGB channels to data frame
imgRGB <- data.frame(
 x = rep(1:imgDm[2], each = imgDm[1]),
 y = rep(imgDm[1]:1, imgDm[2]),
 R = as.vector(img[,,1]),
 G = as.vector(img[,,2]),
 B = as.vector(img[,,3])
)

k-means in Rk-means in R
Each pixel is a datapoint in 3D specifying the intensity in each of the three “R”,
“G”, “B” channels, which determines the pixel’s color.
head(imgRGB, 3)

x y R G B
1 1 480 0 0.3686275 0.6980392
2 1 479 0 0.3686275 0.6980392
3 1 478 0 0.3725490 0.7019608

We use k-means to cluster the pixels into color groups (clusters).
k-means can be performed in R with kmeans() built-in func�on.

k

Set seed since k-means involves a random initialization
set.seed(43658)
k <- 2
kmeans.2clust <- kmeans(imgRGB[, c("R", "G", "B")], centers = k)
names(kmeans.2clust)

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

k cluster centers
kmeans.2clust$centers

R G B
1 0.5682233 0.3251528 0.1452832
2 0.6597320 0.6828609 0.7591578

The centers correspond to the following colors:
rgb(kmeans.2clust$centers)

[1] "#915325" "#A8AEC2"

Cluster assignment of the first 10 pixels
head(kmeans.2clust$cluster, 10)

[1] 2 2 2 2 2 2 2 2 2 2

Convert cluster assignment lables to cluster colors
kmeans.2colors <- rgb(kmeans.2clust$centers[kmeans.2clust$cluster,])
head(kmeans.2colors, 10)

[1] "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2"
[8] "#A8AEC2" "#A8AEC2" "#A8AEC2"

ggplot(data = imgRGB, aes(x = x, y = y)) +
 geom_point(colour = kmeans.2colors) +
 labs(title = paste("k-Means Clustering with", k, "clusters (colors)")) +
 xlab("x") + ylab("y") + theme_bw()

Now add more colors, by increase the number of clusters to 6:

set.seed(348675)
kmeans.6clust <- kmeans(imgRGB[, c("R", "G", "B")], centers = 6)
kmeans.6colors <- rgb(kmeans.6clust$centers[kmeans.6clust$cluster,])

Hierarchical clusteringHierarchical clustering

Alexander Calder’s mobile

If it’s difficult (or if you simply don’t want) to choose the number of clusters
ahead, you can do hierarchical clustering.

Hierarchical clustering can be performed using agglomera�ve (bo�om-up) or
divisive (top-down) approach.

The method requires a choice of a pairwise distance metric and a rule of how
to merge or divide clusters.

The output of the method can be represented as a graphical tree-based
representa�on of the data, called a dendogram.

The tree allows you to evaluate where the cutoff for grouping should occur.

Hierarchical clusteringHierarchical clustering
algorithmalgorithm

Source: ISL

https://www-bcf.usc.edu/~gareth/ISL/

Results for hierarchical clustering differ depending on the choice of:

A distance metric used for pairs of observa�ons, e.g. Euclidean (L2),
Manha�an (L1), Jaccard (Binary),

The rule used for grouping clusters that are already generated, e.g. single
(minimum), completer (maximum), centroid or average cluster linkages.

etc

http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

Different ways to compute dissimilarity between 2 clusters:

Iris datasetIris dataset
We will use the Fisher’s Iris dataset containing measurements on 150 irises.
Hierarchical clustering will calculate the grouping of the flowers into groups
corresponding. We will see that these groups will roughly correspond to the
flower species.
head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Hierarchical clustering in RHierarchical clustering in R
Built-in func�on hclust() performs hierarchical clustering.
We will use only the petal dimensions (2 columns) to compute the distances
between flowers.
We use the Euclidean distance for the dissimilarities between flowers
distMat <- dist(iris[, 3:4])

We use the "complete" linkage method for computing the cluster distances.
clusters <- hclust(distMat, method = "complete")

plot(clusters, cex = 0.7)

The dendrogram suggests that a reasonable choice of the number of clusters is either 3
or 4.

plot(clusters, cex = 0.7)
abline(a = 2, b = 0, col = "blue")
abline(a = 3, b = 0, col = "blue")

We pick 3 clusters.
To get the assignments with 3 clusters from the truncated tree we can use a
cutree() func�on.
(clusterCut <- cutree(clusters, 3))

[1] 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 2 2 2 3 2 3 3 3 3 2 3 3 2 3 2 3
[71] 2 3 2 2 3 3 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 2 2 2 2 2
[106] 2
[141] 2 2 2 2 2 2 2 2 2 2

table(clusterCut, iris$Species)

clusterCut setosa versicolor virginica
1 50 0 0
2 0 21 50
3 0 29 0

plot(clusters, labels = clusterCut, cex = 0.9)
rect.hclust(clusters, k = 3, border=c("red", "blue", "green"))

table(clusterCut, iris$Species)

clusterCut setosa versicolor virginica
1 50 0 0
2 0 21 50
3 0 29 0

From the table we see that the sentosa and virginica were correctly assigned
to separate groups.
However, the method had difficulty grouping the versicolorm flowers into a
separate cluster.

Try another linkage method like “average” and see if it performs be�er.

We use the Euclidean distance for the dissimilarities between flowers
distMat <- dist(iris[, 3:4])
We use the "complete" linkage method for computing the cluster distances.
clusters <- hclust(distMat, method = "average")
plot(clusters, cex = 0.5)

Here we can choose 3 or 5 clusters:

plot(clusters, cex = 0.6)
abline(a = 1.35, b = 0, col = "blue")
abline(a = 0.9, b = 0, col = "blue")

Again we choose 3 clusters

clusterCut <- cutree(clusters, 3)
table(clusterCut, iris$Species)

clusterCut setosa versicolor virginica
1 50 0 0
2 0 45 1
3 0 5 49

We see that this �me the results are be�er in terms of the cluster assignment
agreement with the flower species classifica�on.

plot(clusters, labels = clusterCut, cex = 0.7)
rect.hclust(clusters, k = 3, border=c("red", "blue", "green"))

2D plot of the iris dataset using petal dimensions as coordinates.
The cluster assignments par��on the flowers into species with high accuracy.
ggplot(iris, aes(Petal.Length, Petal.Width)) + theme_bw() +
 geom_text(aes(label = clusterCut), vjust = -1) +
 geom_point(aes(color = Species)) + coord_fixed(1.5)

ExerciseExercise

Go to the “Lec8_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 2.

Course wrap-upCourse wrap-up

Our journeyOur journey

How to learn moreHow to learn more
Where to find out more about the topics of this class:

R for Data Science, by Hadley Wickham: ()
The �dyverse: ()
RStudio: ()
R Markdown: ()
Many online tutorials and forums (e.g. and)

h�p://r4ds.had.co.nz
h�ps://www.�dyverse.org

h�ps://www.rstudio.com/
h�p://rmarkdown.rstudio.com/

Data Carpentry DataCamp

How to learn more advanced topics on R:

Take “Stat 290: Compu�ng for Data Science”
Read “Advanced R”, by Hadley Wickham: ()
Read “R packages”, by Hadley Wickham: ()

h�p://adv-r.had.co.nz/
h�p://rpkgs.had.co.nz/

http://r4ds.had.co.nz/
https://www.tidyverse.org/
https://www.rstudio.com/
http://rmarkdown.rstudio.com/
https://datacarpentry.org/
https://www.datacamp.com/
http://adv-r.had.co.nz/
http://rpkgs.had.co.nz/

Extra: Other unsupervised techniquesExtra: Other unsupervised techniques

Mul�dimensional ScalingMul�dimensional Scaling

MDS algorithm aims to place each object in N-dimensional space such that the
between-object distances are preserved as well as possible. Each object is then
assigned coordinates in each of the N dimensions. The number of dimensions of
an MDS plot N can exceed 2 and is specified a priori. Choosing N=2 op�mizes
the object loca�ons for a two-dimensional sca�erplot.

There are different types of MDS methods including, Classical MDS, Metric MDS and
Non-metric MDS. The details on the differences ca be found on:

 page on Mul�dimensional Scaling,
Chapter 8 of book by Borg, Groenen, and
Mair.

Wiki
Applied Mul�dimensional Scaling

https://en.wikipedia.org/wiki/Multidimensional_scaling
http://www.springer.com/us/book/9783642318474

Percep�on of colorsPercep�on of colors
Gosta Ekman studied how people perceive colors in .
He collected survey data from 31 subjects, which included par�cipants’ ra�ng
of the dissimilarity between each pair of 14 colors on a 5-point scale.
The ra�ngs of all subjects were averaged, and the final mean dissimilarity
matrix was used for construc�ng “map of colors”.

his paper from 1954

http://www.tandfonline.com/doi/abs/10.1080/00223980.1954.9712953

14 colors were studied with wavelengths in the range between 434 and 674 nm.

color similarity scores
ekmanSim <- readRDS("./Lecture8-figure/ekman.rds")
print(ekmanSim)

434 445 465 472 490 504 537 555 584 600 610 628 651
445 0.86
465 0.42 0.50
472 0.42 0.44 0.81
490 0.18 0.22 0.47 0.54
504 0.06 0.09 0.17 0.25 0.61
537 0.07 0.07 0.10 0.10 0.31 0.62
555 0.04 0.07 0.08 0.09 0.26 0.45 0.73
584 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33
600 0.07 0.04 0.01 0.01 0.02 0.08 0.14 0.19 0.58
610 0.09 0.07 0.02 0.00 0.02 0.02 0.05 0.04 0.37 0.74
628 0.12 0.11 0.01 0.01 0.01 0.02 0.02 0.03 0.27 0.50 0.76
651 0.13 0.13 0.05 0.02 0.02 0.02 0.02 0.02 0.20 0.41 0.62 0.85
674 0.16 0.14 0.03 0.04 0.00 0.01 0.00 0.02 0.23 0.28 0.55 0.68 0.76

convert similarities to dissimilarities
ekmanDist <- 1 - ekmanSim

MDS in RMDS in R
Use cmdscale() built-in func�on for classical MDS.
Metric itera�ve MDS and non-metric MDS func�on are available in a package
smacof and other packages are also compared .here
ekmanMDS <- cmdscale(ekmanDist, k = 2)
res <- data.frame(ekmanMDS)
head(res)

X1 X2
434 -0.2137161 -0.41852576
445 -0.2562012 -0.41065436
465 -0.4119890 -0.30925977
472 -0.4369586 -0.27266935
490 -0.4388604 0.07518594
504 -0.3364868 0.37262279

http://gastonsanchez.com/how-to/2013/01/23/MDS-in-R/

library("ggplot2")
wavelengths <- round(seq(434, 674, length.out = 14))
res$wavelength <- factor(wavelengths, levels =wavelengths)
ggplot(res, aes(X1, X2)) + geom_point() + theme_bw() +
 geom_text(aes(label = wavelength), vjust=-1)

The wavelengths were converted to hexadecimal colors using this .website

hex <- c("#2800ff", "#0051ff", "#00aeff", "#00fbff", "#00ff28", "#4eff00", "#92ff00",
 "#ccff00", "#fff900", "#ffbe00", "#ff7b00", "#ff3000", "#ff0000", "#ff0000")
ggplot(res, aes(X1, X2)) + theme_bw() +
 geom_point(aes(color = wavelength), size = 2) +
 geom_text(aes(label = wavelength), vjust=-1) +
 scale_color_manual(values = hex)

https://academo.org/demos/wavelength-to-colour-relationship/

t-Distributed Stochas�c Neighbor Embeddingt-Distributed Stochas�c Neighbor Embedding
t-SNE is a nonlinear technique developed by for
dimensionality reduc�on
It is par�cularly well suited for the visualiza�on of high-dimensional datasets.
The method performs well at visualizing and exposing inherent data clusters
It has been widely applied in many fields including genomics, where the
method is commonly used in single-cell literature for visualizing cell
subpopula�ons.

van der Maaten and Hinton

https://lvdmaaten.github.io/tsne/

tSNE on mass cytometry datatSNE on mass cytometry data
The following example shows how to calculate and plot a 2D t-SNE projec�on using the
Rtsne package. The example and code was developed by .Lukas Weber

The dataset used is the mass cytometry of healthy human bone marrow
dataset from the study conducted by .
Mass cytometry measures the expression levels of up to 40 proteins per cell
and hundreds of cells per second.
In this example t-SNE is very effec�ve at displaying groups of different cell
popula�ons (types).

Amir et al. (2013)

https://github.com/lmweber/Rtsne-example
http://www.ncbi.nlm.nih.gov/pubmed/23685480

here we use a subset of the data
path <- "./Lecture8-figure/healthyHumanBoneMarrow_small.csv"
dat <- read.csv(path)

We select 13 protein markers to used in Amir et al. 2013
colnames_proj <- colnames(dat)[c(11, 23, 10, 16, 7, 22, 14, 28, 12, 6, 8, 13, 30)]
dat <- dat[, colnames_proj]
head(dat)

X144.CD11b X160.CD123 X142.CD19 X147.CD20 X110.111.112.114.CD3
1 5.967343 14.0255518 0.5294468 5.0397625 149.204117
2 -2.965949 -0.4499034 -0.9504946 3.2883098 102.398453
3 22.475813 7.9440827 -2.5556924 -0.3310032 -9.759324
4 -5.457655 -0.3668855 -0.8048915 1.7649024 146.526154
5 127.534332 13.2033119 0.7140800 -1.0700325 7.266849
6 12.181891 9.0580482 1.9163597 2.1253521 653.283997
X158.CD33 X148.CD34 X167.CD38 X145.CD4 X115.CD45 X139.CD45RA
1 2.4958646 4.3011222 29.566343 0.8041515 606.56268 291.058655
2 0.3570583 1.3665982 26.355003 -0.2354967 192.41901 -1.998943
3 304.6151733 3.0677378 165.949097 0.3407812 98.22443 5.670944
4 -2.2423408 -0.7205721 3.933757 -0.6418993 482.09525 13.697150
5 343.4721985 -0.9823112 193.646225 30.6597385 212.06926 6.608723
6 3.9792464 -1.5659959 163.225845 152.5955353 284.07599 36.927834
X146.CD8 X170.CD90
1 346.5215759 12.444887
2 35.8152542 -0.615051
3 0.8252113 13.740484
4 155.2028503 8.284868
5 2.1295056 10.848905
6 14.1040640 6.430328

arcsinh transformation
(see Amir et al. 2013, Online Methods, "Processing of mass cytometry data")
asinh_scale <- 5
dat <- asinh(dat / asinh_scale)
prepare data for Rtsne
dat <- dat[!duplicated(dat),] # remove rows containing duplicate values within rounding
dim(dat)

[1] 999 13

library(Rtsne)
run Rtsne (Barnes-Hut-SNE algorithm) without PCA step
(see Amir et al. 2013, Online Methods, "viSNE analysis")
set.seed(123)
rtsne_out <- Rtsne(as.matrix(dat), perplexity = 20,
 pca = FALSE, verbose = FALSE)

plot 2D t-SNE projection
plot(rtsne_out$Y, asp = 1, pch = 20, col = "blue",
 cex = 0.75, cex.axis = 1.25, cex.lab = 1.25, cex.main = 1.5,
 xlab = "t-SNE dimension 1", ylab = "t-SNE dimension 2",
 main = "2D t-SNE projection")

