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Unsupervised LearningUnsupervised Learning



Unsupervised LearningUnsupervised Learning
Deals with a task of inferring latent (hidden) pa�erns and structures
unlabeled data.

The goal is to understand the rela�onships between features or among
observa�ons.

There is only  and no , i.e. there are no special variables such as response
or output variables, and no prespecified classes labels for the observa�ons.

X Y



Unsupervised learning encompasses:
dimensionality reduc�on, manifold learning 
e.g. PCA, MDS, Isomap, Diffusion Map, t-SNE, Autoencoder
clustering e.g. k-means, hierarchical clustering, mixture models
anomaly detec�on
latent variable models

 

It can handle the tasks such as:
image segmenta�on,
image clustering / automa�c labeling,
visualiza�on of high dimensional data e.g. gene expression,
finding cell subtypes.



Dimensionality Reduc�onDimensionality Reduc�on



Dimensionality Reduc�onDimensionality Reduc�on
Most of modern datasets are high-dimensional e.g. gene�c sequencing,
medical records, user internet ac�vity data etc.
DR or feature extrac�on methods can reduce the number of variables.
The methods can be used to:

compress the data
remove redundant features and noise
increase accuracy of learning methods by avoiding over-fi�ng and

Common methods for dimensionality reduc�on include: PCA, CA, ICA, MDS,
Isomaps, Laplacian Eigenmaps, tSNE, Autoencoder.

the curse of dimensionality

http://statweb.stanford.edu/~donoho/Lectures/AMS2000/Curses.pdf


Principal Component Analysis (PCA)Principal Component Analysis (PCA)

Source: ESL Chapter 14

https://web.stanford.edu/~hastie/ElemStatLearn/


Maximal variance Projec�onMaximal variance Projec�on
 

For ,  is a centered data matrix.
PCA is an eigenvalue decomposi�on of the sample covariance matrix:
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or (equivalently) a singular value decomposi�on (SVD) of  itself:X ̃ 
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In the above  and  are orthogonal matrices andU V

 is a diagonal matrix.Σ



The projec�on of X into the space of principal components is called a
component scores:

T = V = UΣ V = UΣX ̃  V T

 

The weights of the variables in the PCA space, , are called loadings.V



Dimensionality reduc�on with PCADimensionality reduc�on with PCA
PCA finds a set of  uncorrelated direc�ons (components) that are linear
combina�ons of the original  variables.
These components sequen�ally explain most of the varia�on remaining
subsequently in the data.

Reduc�on occurs when the top  components are kept and used to
represent the original -dimensional data.

The -dimensional approxima�on of  is:
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The US crime rates datasetThe US crime rates dataset
The built in dataset includes informa�on on violent crime rates in the US in 1975.

head(USArrests)

##            Murder Assault UrbanPop Rape 
## Alabama      13.2     236       58 21.2 
## Alaska       10.0     263       48 44.5 
## Arizona       8.1     294       80 31.0 
## Arkansas      8.8     190       50 19.5 
## California    9.0     276       91 40.6 
## Colorado      7.9     204       78 38.7

Mean and standard devia�on of the crime rates across all states:

apply(USArrests, 2, mean)

##   Murder  Assault UrbanPop     Rape  
##    7.788  170.760   65.540   21.232

apply(USArrests, 2, sd)

##    Murder   Assault  UrbanPop      Rape  
##  4.355510 83.337661 14.474763  9.366385



PCA in RPCA in R
In R, the func�on prcomp() can be used to perform PCA.
prcomp() is faster and preferred method over princomp(); it is a PCA
implementa�on based on SVD.
pca.res <- prcomp(USArrests, scale = TRUE)

The output of prcomp() is a list containing:
names(pca.res)

## [1] "sdev"     "rotation" "center"   "scale"    "x"



The elements of prcomp output are:

The principal components/scores matrix,  with projected samples
coordinates.

T = UΣ

head(pca.res$x)

##                   PC1        PC2         PC3          PC4 
## Alabama    -0.9756604  1.1220012 -0.43980366  0.154696581 
## Alaska     -1.9305379  1.0624269  2.01950027 -0.434175454 
## Arizona    -1.7454429 -0.7384595  0.05423025 -0.826264240 
## Arkansas    0.1399989  1.1085423  0.11342217 -0.180973554 
## California -2.4986128 -1.5274267  0.59254100 -0.338559240 
## Colorado   -1.4993407 -0.9776297  1.08400162  0.001450164

These are the sample coordinates in the PCA projec�on space.



The principal axes matrix, , contains the eigenvectors of the covariance
matrix. A related matrix of loadings is a matrix of eigenvectors scaled by the
square roots of the respec�ve eigenvalues:

V

L =
VΣ

n − 1‾ ‾‾‾‾√

The loadings or principal axes give the weights of the variables in each of the principal
components.

pca.res$rotation

##                 PC1        PC2        PC3         PC4 
## Murder   -0.5358995  0.4181809 -0.3412327  0.64922780 
## Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748 
## UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773 
## Rape     -0.5434321 -0.1673186  0.8177779  0.08902432



pca.res$rotation

##                 PC1        PC2        PC3         PC4 
## Murder   -0.5358995  0.4181809 -0.3412327  0.64922780 
## Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748 
## UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773 
## Rape     -0.5434321 -0.1673186  0.8177779  0.08902432

 

PC1 places similar weights on Assault, Murder, and Rape variables, and a
much smaller one on UrbanPop. Therefore, PC1 measures an overall
measure of crime.
The 2nd loading puts most weight on UrbanPop. Thus, PC2 measures a
level of urbaniza�on.
The crime-related variables are correlated with each other, and therefore are
close to each other on the biplot.
UrbanPop is independent of the crime rate, and so it is further away on the
plot.



The standard devia�ons of the principal components (square roots of the
eigenvalues of )X ̃ 

T
X ̃ 

pca.res$sdev

## [1] 1.5748783 0.9948694 0.5971291 0.4164494

The centers of the features, used for shi�ing:
pca.res$center

##   Murder  Assault UrbanPop     Rape  
##    7.788  170.760   65.540   21.232

The standard devia�ons of the features, used for scaling:
pca.res$scale

##    Murder   Assault  UrbanPop      Rape  
##  4.355510 83.337661 14.474763  9.366385



A scree plot can be used to choose
how many components to retain.

Look for “elbows” in the scree plots

Discard the dimensions with
corresponding eigenvalues or
equivalently the propor�on of
variance explained that drop off
significantly.

# PCA eigenvalues/variances: 
(pr.var <- pca.res$sdev^2)

## [1] 2.4802416 0.9897652 0.3565632 0.1734301

plot(pca.res)

Scree plotScree plot



Percent of variance explained:
# install.packages("factoextra") 
library(factoextra) 
 
# Percent of variance explained: 
(pve <- 100*pr.var/sum(pr.var))

## [1] 62.006039 24.744129  8.914080  4.335752

fviz_eig(pca.res) + theme(text = element_text(size = 20))



Samples PlotSamples Plot
Each principal component loading and score vector is unique, up to a sign flip. So
another so�ware could return this plot instead:

fviz_pca_ind(pca.res) + coord_fixed() +  
    theme(text = element_text(size = 20))



fviz_pca_var(pca.res) + coord_fixed() + 
    theme(text = element_text(size = 20))

fviz_contrib(pca.res, choice = "var", axes = 1) 
    theme(text = element_text(size = 20))

Features PlotFeatures Plot



BiplotBiplot
A biplot allows informa�on on both samples and variables of a data matrix to be
displayed at the same �me.

fviz_pca_biplot(pca.res) + coord_fixed() + 
    theme(text = element_text(size = 20))



ExerciseExercise
 

Go to the “Lec8_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 1.



Cluster AnalysisCluster Analysis



Cluster AnalysisCluster Analysis
Clustering is an exploratory technique which can discover hidden groups
that are important for understanding the data.

Groupings are determined from the data itself, without any prior knowledge
about labels or classes.

There are the clustering methods available; a lot of them have an R
implementa�on available on .CRAN

https://cran.r-project.org/web/views/Cluster.html


To cluster the data we need a measure of similarity or dissimilarity between
a pair of observa�ons, e.g. an Euclidean distance.



k-meansk-means
k-means is a simple and fast itera�ve reloca�on method for clustering data
into  dis�nct non-overlapping groups.
The algorithm minimizes the varia�on within each cluster.

k

Source: link

http://shabal.in/visuals/kmeans/3.html


k-means drawbacksk-means drawbacks
The number clusters  must be prespecified (before clustering).

The method is stochas�c, and involves random ini�aliza�on of cluster
centers.

This means that each �me the algorithm is run, the results obtained can be
different.

k

The number of clusters, , should be chosen using sta�s�cs such as:k

Gap Sta�s�c 

Silhoue�e sta�s�c 

Calinski-Harbasz index 

link

link

link

http://www.web.stanford.edu/~hastie/Papers/gap.pdf
https://en.wikipedia.org/wiki/Silhouette_(clustering)
http://www.biomedcentral.com/content/supplementary/1477-5956-9-30-S4.PDF


Image segmenta�onImage segmenta�on
One of the applica�on of k-means clustering is .

Here we use a picture of a field of tulips in the Netherlands downloaded from
.

image segmenta�on

here

https://www.r-bloggers.com/r-k-means-clustering-on-an-image/
file:///home/lanhuong/MEGA/Teaching/cme195_intro_to_R/cme195.github.io/assets/lectures/%22http://www.infohostels.com/immagini/news/2179.jpg%22


Impor�ng image to RImpor�ng image to R
First, we download the image:
library(jpeg) 
url <- "http://www.infohostels.com/immagini/news/2179.jpg" 
dFile <- download.file(url, "./Lecture8-figure/Image.jpg") 
img <- readJPEG("./Lecture8-figure/Image.jpg")  
(imgDm <- dim(img))

## [1] 480 960   3

The image is a 3D array, so we will convert it to a data frame.

Each row of the data frame should correspond a single pixel.

The columns should include the pixel loca�on (x and y), and the pixel
intensity in red, green, and blue ( R, G, B).

# Assign RGB channels to data frame 
imgRGB <- data.frame( 
  x = rep(1:imgDm[2], each = imgDm[1]), 
  y = rep(imgDm[1]:1, imgDm[2]), 
  R = as.vector(img[,,1]), 
  G = as.vector(img[,,2]), 
  B = as.vector(img[,,3]) 
)



k-means in Rk-means in R
Each pixel is a datapoint in 3D specifying the intensity in each of the three “R”,
“G”, “B” channels, which determines the pixel’s color.
head(imgRGB, 3)

##   x   y R         G         B 
## 1 1 480 0 0.3686275 0.6980392 
## 2 1 479 0 0.3686275 0.6980392 
## 3 1 478 0 0.3725490 0.7019608

We use k-means to cluster the pixels  into color groups (clusters).
k-means can be performed in R with kmeans() built-in func�on.

k

# Set seed since k-means involves a random initialization 
set.seed(43658) 
k <- 2 
kmeans.2clust <- kmeans(imgRGB[, c("R", "G", "B")], centers = k) 
names(kmeans.2clust)

## [1] "cluster"      "centers"      "totss"        "withinss"     
## [5] "tot.withinss" "betweenss"    "size"         "iter"         
## [9] "ifault"



# k cluster centers 
kmeans.2clust$centers

##           R         G         B 
## 1 0.5682233 0.3251528 0.1452832 
## 2 0.6597320 0.6828609 0.7591578

# The centers correspond to the following colors: 
rgb(kmeans.2clust$centers)

## [1] "#915325" "#A8AEC2"

# Cluster assignment of the first 10 pixels 
head(kmeans.2clust$cluster, 10)

##  [1] 2 2 2 2 2 2 2 2 2 2

# Convert cluster assignment lables to cluster colors 
kmeans.2colors <- rgb(kmeans.2clust$centers[kmeans.2clust$cluster, ]) 
head(kmeans.2colors, 10)

##  [1] "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" "#A8AEC2" 
##  [8] "#A8AEC2" "#A8AEC2" "#A8AEC2"



ggplot(data = imgRGB, aes(x = x, y = y)) +  
  geom_point(colour = kmeans.2colors) + 
  labs(title = paste("k-Means Clustering with", k, "clusters (colors)")) + 
  xlab("x") + ylab("y") + theme_bw()



Now add more colors, by increase the number of clusters to 6:

set.seed(348675) 
kmeans.6clust <- kmeans(imgRGB[, c("R", "G", "B")], centers = 6) 
kmeans.6colors <- rgb(kmeans.6clust$centers[kmeans.6clust$cluster, ])



Hierarchical clusteringHierarchical clustering

Alexander Calder’s mobile

If it’s difficult (or if you simply don’t want) to choose the number of clusters
ahead, you can do hierarchical clustering. 



Hierarchical clustering can be performed using agglomera�ve (bo�om-up) or
divisive (top-down) approach.

The method requires a choice of a pairwise distance metric and a rule of how
to merge or divide clusters.

The output of the method can be represented as a graphical tree-based
representa�on of the data, called a dendogram.

The tree allows you to evaluate where the cutoff for grouping should occur.



Hierarchical clusteringHierarchical clustering
algorithmalgorithm



Source: ISL

https://www-bcf.usc.edu/~gareth/ISL/


Results for hierarchical clustering differ depending on the choice of:

A distance metric used for pairs of observa�ons, e.g. Euclidean (L2),
Manha�an (L1), Jaccard (Binary), 

The rule used for grouping clusters that are already generated, e.g. single
(minimum), completer (maximum), centroid or average cluster linkages.

etc

 

http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/


Different ways to compute dissimilarity between 2 clusters:



Iris datasetIris dataset
We will use the Fisher’s Iris dataset containing measurements on 150 irises.
Hierarchical clustering will calculate the grouping of the flowers into groups
corresponding. We will see that these groups will roughly correspond to the
flower species.
head(iris)

##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
## 1          5.1         3.5          1.4         0.2  setosa 
## 2          4.9         3.0          1.4         0.2  setosa 
## 3          4.7         3.2          1.3         0.2  setosa 
## 4          4.6         3.1          1.5         0.2  setosa 
## 5          5.0         3.6          1.4         0.2  setosa 
## 6          5.4         3.9          1.7         0.4  setosa



Hierarchical clustering in RHierarchical clustering in R
Built-in func�on hclust() performs hierarchical clustering.
We will use only the petal dimensions (2 columns) to compute the distances
between flowers.
# We use the Euclidean distance for the dissimilarities between flowers 
distMat <- dist(iris[, 3:4]) 
 
 
# We use the "complete" linkage method for computing the cluster distances. 
clusters <- hclust(distMat, method = "complete")



plot(clusters, cex = 0.7)



The dendrogram suggests that a reasonable choice of the number of clusters is either 3
or 4.

plot(clusters, cex = 0.7) 
abline(a = 2, b = 0, col = "blue") 
abline(a = 3, b = 0, col = "blue")



We pick 3 clusters.
To get the assignments with 3 clusters from the truncated tree we can use a
cutree() func�on.
(clusterCut <- cutree(clusters, 3))

##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 2 2 2 3 2 3 3 3 3 2 3 3 2 3 2 3 
##  [71] 2 3 2 2 3 3 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 2 2 2 2 2 
## [106] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
## [141] 2 2 2 2 2 2 2 2 2 2

table(clusterCut, iris$Species)

##            
## clusterCut setosa versicolor virginica 
##          1     50          0         0 
##          2      0         21        50 
##          3      0         29         0



plot(clusters, labels = clusterCut, cex = 0.9) 
rect.hclust(clusters, k = 3, border=c("red", "blue", "green"))



table(clusterCut, iris$Species)

##            
## clusterCut setosa versicolor virginica 
##          1     50          0         0 
##          2      0         21        50 
##          3      0         29         0

From the table we see that the sentosa and virginica were correctly assigned
to separate groups.
However, the method had difficulty grouping the versicolorm flowers into a
separate cluster.



Try another linkage method like “average” and see if it performs be�er.

# We use the Euclidean distance for the dissimilarities between flowers 
distMat <- dist(iris[, 3:4]) 
# We use the "complete" linkage method for computing the cluster distances. 
clusters <- hclust(distMat, method = "average") 
plot(clusters, cex = 0.5)



Here we can choose 3 or 5 clusters:

plot(clusters, cex = 0.6) 
abline(a = 1.35, b = 0, col = "blue") 
abline(a = 0.9, b = 0, col = "blue")



Again we choose 3 clusters

clusterCut <- cutree(clusters, 3) 
table(clusterCut, iris$Species)

##            
## clusterCut setosa versicolor virginica 
##          1     50          0         0 
##          2      0         45         1 
##          3      0          5        49

We see that this �me the results are be�er in terms of the cluster assignment
agreement with the flower species classifica�on.



plot(clusters, labels = clusterCut, cex = 0.7) 
rect.hclust(clusters, k = 3, border=c("red", "blue", "green"))



2D plot of the iris dataset using petal dimensions as coordinates.
The cluster assignments par��on the flowers into species with high accuracy.
ggplot(iris, aes(Petal.Length, Petal.Width)) + theme_bw() + 
  geom_text(aes(label = clusterCut), vjust = -1) +  
  geom_point(aes(color = Species)) + coord_fixed(1.5)



ExerciseExercise
 

Go to the “Lec8_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 2.



Course wrap-upCourse wrap-up



Our journeyOur journey



How to learn moreHow to learn more
Where to find out more about the topics of this class:

R for Data Science, by Hadley Wickham: ( )
The �dyverse: ( )
RStudio: ( )
R Markdown: ( )
Many online tutorials and forums (e.g.  and )

h�p://r4ds.had.co.nz
h�ps://www.�dyverse.org

h�ps://www.rstudio.com/
h�p://rmarkdown.rstudio.com/

Data Carpentry DataCamp

How to learn more advanced topics on R:

Take “Stat 290: Compu�ng for Data Science”
Read “Advanced R”, by Hadley Wickham: ( )
Read “R packages”, by Hadley Wickham: ( )

h�p://adv-r.had.co.nz/
h�p://rpkgs.had.co.nz/

http://r4ds.had.co.nz/
https://www.tidyverse.org/
https://www.rstudio.com/
http://rmarkdown.rstudio.com/
https://datacarpentry.org/
https://www.datacamp.com/
http://adv-r.had.co.nz/
http://rpkgs.had.co.nz/


Extra: Other unsupervised techniquesExtra: Other unsupervised techniques



Mul�dimensional ScalingMul�dimensional Scaling

MDS algorithm aims to place each object in N-dimensional space such that the
between-object distances are preserved as well as possible. Each object is then
assigned coordinates in each of the N dimensions. The number of dimensions of
an MDS plot N can exceed 2 and is specified a priori. Choosing N=2 op�mizes
the object loca�ons for a two-dimensional sca�erplot.

There are different types of MDS methods including, Classical MDS, Metric MDS and
Non-metric MDS. The details on the differences ca be found on:

 page on Mul�dimensional Scaling,
Chapter 8 of  book by Borg, Groenen, and
Mair.

Wiki
Applied Mul�dimensional Scaling

https://en.wikipedia.org/wiki/Multidimensional_scaling
http://www.springer.com/us/book/9783642318474


Percep�on of colorsPercep�on of colors
Gosta Ekman studied how people perceive colors in .
He collected survey data from 31 subjects, which included par�cipants’ ra�ng
of the dissimilarity between each pair of 14 colors on a 5-point scale.
The ra�ngs of all subjects were averaged, and the final mean dissimilarity
matrix was used for construc�ng “map of colors”.

his paper from 1954

http://www.tandfonline.com/doi/abs/10.1080/00223980.1954.9712953


14 colors were studied with wavelengths in the range between 434 and 674 nm.



# color similarity scores  
ekmanSim <- readRDS("./Lecture8-figure/ekman.rds") 
print(ekmanSim)

##      434  445  465  472  490  504  537  555  584  600  610  628  651 
## 445 0.86                                                             
## 465 0.42 0.50                                                        
## 472 0.42 0.44 0.81                                                   
## 490 0.18 0.22 0.47 0.54                                              
## 504 0.06 0.09 0.17 0.25 0.61                                         
## 537 0.07 0.07 0.10 0.10 0.31 0.62                                    
## 555 0.04 0.07 0.08 0.09 0.26 0.45 0.73                               
## 584 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33                          
## 600 0.07 0.04 0.01 0.01 0.02 0.08 0.14 0.19 0.58                     
## 610 0.09 0.07 0.02 0.00 0.02 0.02 0.05 0.04 0.37 0.74                
## 628 0.12 0.11 0.01 0.01 0.01 0.02 0.02 0.03 0.27 0.50 0.76           
## 651 0.13 0.13 0.05 0.02 0.02 0.02 0.02 0.02 0.20 0.41 0.62 0.85      
## 674 0.16 0.14 0.03 0.04 0.00 0.01 0.00 0.02 0.23 0.28 0.55 0.68 0.76

# convert similarities to dissimilarities 
ekmanDist <- 1 - ekmanSim



MDS in RMDS in R
Use cmdscale() built-in func�on for classical MDS.
Metric itera�ve MDS and non-metric MDS func�on are available in a package
smacof and other packages are also compared .here
ekmanMDS <- cmdscale(ekmanDist, k = 2) 
res <- data.frame(ekmanMDS) 
head(res)

##             X1          X2 
## 434 -0.2137161 -0.41852576 
## 445 -0.2562012 -0.41065436 
## 465 -0.4119890 -0.30925977 
## 472 -0.4369586 -0.27266935 
## 490 -0.4388604  0.07518594 
## 504 -0.3364868  0.37262279

http://gastonsanchez.com/how-to/2013/01/23/MDS-in-R/


library("ggplot2") 
wavelengths <- round(seq( 434, 674, length.out = 14)) 
res$wavelength <- factor(wavelengths, levels =wavelengths) 
ggplot(res, aes(X1, X2)) + geom_point() + theme_bw() + 
  geom_text(aes(label = wavelength), vjust=-1)



The wavelengths were converted to hexadecimal colors using this .website

hex <- c("#2800ff", "#0051ff", "#00aeff", "#00fbff", "#00ff28", "#4eff00", "#92ff00",  
          "#ccff00", "#fff900", "#ffbe00", "#ff7b00", "#ff3000", "#ff0000", "#ff0000") 
ggplot(res, aes(X1, X2)) + theme_bw() + 
  geom_point(aes(color = wavelength), size = 2) +  
  geom_text(aes(label = wavelength), vjust=-1) + 
  scale_color_manual(values = hex)

https://academo.org/demos/wavelength-to-colour-relationship/


t-Distributed Stochas�c Neighbor Embeddingt-Distributed Stochas�c Neighbor Embedding
t-SNE is a nonlinear technique developed by  for
dimensionality reduc�on
It is par�cularly well suited for the visualiza�on of high-dimensional datasets.
The method performs well at visualizing and exposing inherent data clusters
It has been widely applied in many fields including genomics, where the
method is commonly used in single-cell literature for visualizing cell
subpopula�ons.

van der Maaten and Hinton

https://lvdmaaten.github.io/tsne/


tSNE on mass cytometry datatSNE on mass cytometry data
The following example shows how to calculate and plot a 2D t-SNE projec�on using the
Rtsne package. The example and code was developed by .Lukas Weber

The dataset used is the mass cytometry of healthy human bone marrow
dataset from the study conducted by .
Mass cytometry measures the expression levels of up to 40 proteins per cell
and hundreds of cells per second.
In this example t-SNE is very effec�ve at displaying groups of different cell
popula�ons (types).

Amir et al. (2013)

https://github.com/lmweber/Rtsne-example
http://www.ncbi.nlm.nih.gov/pubmed/23685480


#  here we use a subset of the data 
path <- "./Lecture8-figure/healthyHumanBoneMarrow_small.csv" 
dat <- read.csv(path)

# We select 13 protein markers to used in Amir et al. 2013 
colnames_proj <- colnames(dat)[c(11, 23, 10, 16, 7, 22, 14, 28, 12, 6, 8, 13, 30)] 
dat <- dat[, colnames_proj]       
head(dat)

##   X144.CD11b X160.CD123  X142.CD19  X147.CD20 X110.111.112.114.CD3 
## 1   5.967343 14.0255518  0.5294468  5.0397625           149.204117 
## 2  -2.965949 -0.4499034 -0.9504946  3.2883098           102.398453 
## 3  22.475813  7.9440827 -2.5556924 -0.3310032            -9.759324 
## 4  -5.457655 -0.3668855 -0.8048915  1.7649024           146.526154 
## 5 127.534332 13.2033119  0.7140800 -1.0700325             7.266849 
## 6  12.181891  9.0580482  1.9163597  2.1253521           653.283997 
##     X158.CD33  X148.CD34  X167.CD38    X145.CD4 X115.CD45 X139.CD45RA 
## 1   2.4958646  4.3011222  29.566343   0.8041515 606.56268  291.058655 
## 2   0.3570583  1.3665982  26.355003  -0.2354967 192.41901   -1.998943 
## 3 304.6151733  3.0677378 165.949097   0.3407812  98.22443    5.670944 
## 4  -2.2423408 -0.7205721   3.933757  -0.6418993 482.09525   13.697150 
## 5 343.4721985 -0.9823112 193.646225  30.6597385 212.06926    6.608723 
## 6   3.9792464 -1.5659959 163.225845 152.5955353 284.07599   36.927834 
##      X146.CD8 X170.CD90 
## 1 346.5215759 12.444887 
## 2  35.8152542 -0.615051 
## 3   0.8252113 13.740484 
## 4 155.2028503  8.284868 
## 5   2.1295056 10.848905 
## 6  14.1040640  6.430328



# arcsinh transformation  
# (see Amir et al. 2013, Online Methods, "Processing of mass cytometry data") 
asinh_scale <- 5 
dat <- asinh(dat / asinh_scale)   
# prepare data for Rtsne 
dat <- dat[!duplicated(dat), ]  # remove rows containing duplicate values within rounding 
dim(dat)

## [1] 999  13

library(Rtsne) 
# run Rtsne (Barnes-Hut-SNE algorithm) without PCA step  
# (see Amir et al. 2013, Online Methods, "viSNE analysis") 
set.seed(123)   
rtsne_out <- Rtsne(as.matrix(dat), perplexity = 20, 
                   pca = FALSE, verbose = FALSE)



# plot 2D t-SNE projection 
plot(rtsne_out$Y, asp = 1, pch = 20, col = "blue",  
     cex = 0.75, cex.axis = 1.25, cex.lab = 1.25, cex.main = 1.5,  
     xlab = "t-SNE dimension 1", ylab = "t-SNE dimension 2",  
     main = "2D t-SNE projection")


