
Lecture 7: Hypothesis tes�ng andLecture 7: Hypothesis tes�ng and
classifica�onclassifica�on
CME/STATS 195CME/STATS 195
Lan Huong NguyenLan Huong Nguyen
October 18, 2018October 18, 2018

Hypothesis tes�ng

Logis�c Regression

Random Forest

ContentsContents

Hypothesis tes�ngHypothesis tes�ng

Hypothesis tes�ng can answer ques�ons:Hypothesis tes�ng can answer ques�ons:
Is the measured quan�ty equal to/higher/lower than a given threshold?
e.g. is the number of faulty items in an order sta�s�cally higher than the one
guaranteed by a manufacturer?
Is there a difference between two groups or observa�ons? e.g. Do treated
pa�ent have a higher survival rate than the untreated ones?
Is the level of one quan�ty related to the value of the other quan�ty? e.g. Is
hyperac�vity related to ea�ng sugar? Is lung cancer related to smoking?

To perform a hypothesis test you need to:To perform a hypothesis test you need to:
1. Define the null and alterna�ve hypotheses.
2. Choose level of significance .
3. Pick and compute test sta�s�cs.
4. Compute the p-value.
5. Check whether to reject the null hypothesis by comparing p-value to .
6. Draw conclusion from the test.

α

α

Null and alterna�ve hypothesesNull and alterna�ve hypotheses
The null hypothesis (): A statement assumed to be true unless it can be shown to be
incorrect beyond a reasonable doubt. This is something one usually a�empts to disprove
or discredit.

H0

The alternate hypothesis (): A claim that is contradictory to H0 and what we
conclude when we reject H0.

H1

H0 and H1 are on purporse set up to be contradictory, so that one can collect and
examine data to decide if there is enough evidence to reject the null hypothesis or not.

Student’s t-testStudent’s t-test
William Gosset (1908), a chemist at the Guiness brewery.
Published in Biometrika under a pseudonym Student.
Used to select best yielding varie�es of barley.
Now one of the standard/tradi�onal methods for hypothesis tes�ng.

Among the typical applica�ons:

Comparing popula�on mean to a constant value
Comparing the means of two popula�ons
Comparing the slope of a regression line to a constant

In general, used when the test sta�s�c would follow a normal distribu�on if the value of
a scaling term in the test sta�s�c were known.

Distribu�on of the t-sta�s�cDistribu�on of the t-sta�s�c

If , the empirical es�mates for mean and variance are:
and

∼  (μ,)Xi σ2 =X̄ 1
n
∑n

i=1 Xi

= (−s2 1
n−1

∑n
i=1 Xi X̄)2

The t-sta�s�c is:

T = ∼
− muX̄

s/ n‾√
tν=n−1

p-valuep-value
p-value is the probability of obtaining the same or “more extreme” event
than the one observed, assuming the null hypothesis holds (is true).

A small p-value, typically < 0.05, indicates strong evidence against the null
hypothesis; in this case you can reject the null hypothesis.

A large p-value, > 0.05, indicates weak evidence against the null hypothesis;
in this case, you do NOT reject the null hypothesis.

p − value = P[observations ∣ hypothesis] ≠ P[hypothesis ∣ ovservations]

p-values should NOT be used a “ranking”/“scoring” system for your hypotheses

Is the mean flight arrival delay sta�s�cally
equal to 0?

Test the null hypothesis:

where is where is the average arrival
delay.

: μ = = 0H0 μ0

: μ ≠ = 0Ha μ0

μ μ

Two-sided test of the meanTwo-sided test of the mean

library(tidyverse)
library(nycflights13)
mean(flights$arr_delay, na.rm = T)

[1] 6.895377

Is this sta�s�cally significant?

(tt = t.test(x=flights$arr_delay, mu=0, alternative="two.sided"))

One Sample t-test

data: flights$arr_delay
t = 88.39, df = 327340, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
6.742478 7.048276
sample estimates:
mean of x
6.895377

The func�on t.test returns an object containing the following components:

names(tt)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

The p-value:
tt$p.value

[1] 0

The 95% confidence interval for the mean:
tt$conf.int

[1] 6.742478 7.048276
attr(,"conf.level")
[1] 0.95

One-sided can be more powerful, but the
intepreta�on is more difficult.

Test the null hypothesis:

: μ = = 0H0 μ0

: μ < = 0Ha μ0

t.test(x, mu=0, alternative="less")

One-sided test of the meanOne-sided test of the mean

Is the average delay 5 or is it lower?

(tt = t.test(x=flights$arr_delay, mu=5, alternative="less"))

One Sample t-test

data: flights$arr_delay
t = 24.296, df = 327340, p-value = 1
alternative hypothesis: true mean is less than 5
95 percent confidence interval:
-Inf 7.023694
sample estimates:
mean of x
6.895377

Failure to reject is not acceptance of the null hypothesis.

Tes�ng difference between groupsTes�ng difference between groups
Is the average arrival delay the same for the winter and summer?

Test the null hypothesis:

: =H0 μa μb

: ≠Ha μa μb

where mean arr_delay in the winter and is the mean arr_delay in the
summer.

μa μb

t.test(x, y)

Seasonal differences in flight delaySeasonal differences in flight delay
flights %>%
 mutate(season = cut(month, breaks = c(0,3,6,9,12))) %>%
 ggplot(aes(x = season, y = arr_delay)) + geom_boxplot (alpha=0.1) +
 xlab("Season") + ylab("Arrival delay")

Warning: Removed 9430 rows containing non-finite values (stat_boxplot).

Seasonal differences in flight delaySeasonal differences in flight delay
flights %>%
 filter(arr_delay < 120) %>%
 mutate(season = cut(month, breaks = c(0,3,6,9,12))) %>%
 ggplot(aes(x = season, y = arr_delay)) + geom_boxplot (alpha=0.01) +
 xlab("Season") + ylab("Arrival delay")

Tes�ng seasonal differences in flight delayTes�ng seasonal differences in flight delay
flights.winter = filter(flights, month %in% c(1,2,3))
flights.summer = filter(flights, month %in% c(7,8,9))
t.test(x=flights.winter$arr_delay, y=flights.summer$arr_delay)

Welch Two Sample t-test

data: flights.winter$arr_delay and flights.summer$arr_delay
t = -2.4383, df = 161250, p-value = 0.01476
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9780344 -0.1063691
sample estimates:
mean of x mean of y
5.857851 6.400052

ExerciseExercise

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 1.

Classifica�onClassifica�on
Classifica�on is a supervised methood which deals with predic�on outcomes
or response variables that are qualita�ve, or categorical.

The task is to classify or assign each observa�on to a category or a class.

Examples of classifica�on problems include:
predic�ng what medical condi�on or disease a pa�ent has base on
their symptoms,
determining cell types based on their gene expression profiles
(single cell RNA-seq data).
detec�ng fraudulent transac�ons based on the transac�on history

Logis�c RegressionLogis�c Regression

Logis�c RegressionLogis�c Regression
Logis�c regression is actually used for classifica�on, and not regression tasks,

.

The name regression comes from the fact that the method fits a linear
func�on to a con�nuous quan�ty, the log odds of the response.

Y ∈ {0, 1}

p = P[Y = 1 ∣ X]

log() = Xβ = + x
p

1 − p
β0 βT

1

The method performs binary classifica�on (k = 2), but can be generalized to
handle classes (mul�nomial logis�c regression).k > 2

g(p)

(η)g−1

η

E[Y]

= log(), (logit a link function)
p

1 − p

= , (logistic function)
1

1 + e−η

= Xβ, (linear predictor)

= P[Y = 1 ∣ X = x] (probability of outcome)

= p = (η)g−1

=
1

1 + e−Xβ

Grad School AdmissionsGrad School Admissions
Suppose we would like to predict students’ admission to graduate school based on their
GRE, GPA, and the rank of their undergraduate ins�tu�on.

admissions <- read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

Parsed with column specification:
cols(
admit = col_integer(),
gre = col_integer(),
gpa = col_double(),
rank = col_integer()
)

admissions

A tibble: 400 x 4
admit gre gpa rank
<int> <int> <dbl> <int>
1 0 380 3.61 3
2 1 660 3.67 3
3 1 800 4 1
4 1 640 3.19 4
5 0 520 2.93 4
6 1 760 3 2
7 1 560 2.98 1
8 0 400 3.08 2
9 1 540 3.39 3
10 0 700 3.92 2
... with 390 more rows

summary(admissions)

admit gre gpa rank
Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
Median :0.0000 Median :580.0 Median :3.395 Median :2.000
Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000

sapply(admissions, sd)

admit gre gpa rank
0.4660867 115.5165364 0.3805668 0.9444602

Check that there are observa�ons included in each subgroup, and whether the data is
balanced:

with(admissions, table(admit, rank))

rank
admit 1 2 3 4
0 28 97 93 55
1 33 54 28 12

Logis�c Regression in RLogis�c Regression in R
In R logis�c regression can be done using a func�on glm().
glm stands for Generalized Linear Model.
The func�on can fit many other regression models. Use ?glm to learn more.
For cases with classes, multinom() func�on from nnet package can
be used. To see how go over this .

k > 2
example

https://stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/

Note that currently the column ‘admit’ and ‘rank’ in admissions are integers.

sapply(admissions, class)

admit gre gpa rank
"integer" "integer" "numeric" "integer"

We convert the two columns to factors.

admissions <- mutate(admissions,
 admit = factor(admit, levels = c(0, 1), labels = c("rejected", "admitted")),
 rank = factor(rank, levels = 1:4)
)
admissions

A tibble: 400 x 4
admit gre gpa rank
<fct> <int> <dbl> <fct>
1 rejected 380 3.61 3
2 admitted 660 3.67 3
3 admitted 800 4 1
4 admitted 640 3.19 4
5 rejected 520 2.93 4
6 admitted 760 3 2
7 admitted 560 2.98 1
8 rejected 400 3.08 2
9 admitted 540 3.39 3
10 rejected 700 3.92 2
... with 390 more rows

Split dataSplit data
Divide data into train and test set so that we can evaluate the model accuracy later on.
Here we use 60%-20%-20% split.

set.seed(78356)
n <- nrow(admissions)
idx <- sample(1:n, size = n)
train.idx <- idx[seq(1, floor(0.6*n))]
valid.idx <- idx[seq(floor(0.6*n)+1, floor(0.8*n))]

train <- admissions[train.idx,]
valid <- admissions[valid.idx,]
test <- admissions[-c(train.idx, valid.idx),]

nrow(train)

[1] 240

nrow(valid)

[1] 80

nrow(test)

[1] 80

Fi�ng a logis�c regression modelFi�ng a logis�c regression model
logit_fit <- glm(
 admit ~ gre + gpa + rank, data = train, family = "binomial")

The first argument,
formula = admit ~ gre + gpa + rank,
specifies the linear predictor part, .

You need to set the family to family = "binomial" equivalent to
choosing a logis�c regression, i.e. using a logit link func�on in a GLM
model.

η = Xβ

g(⋅)

Logis�c regression coefficients for con�nuous predictors (covariates) give the log fold
change in the odds of the outcome corresponding to a unit increase in the predictor.

βcont = log()
P[Y = 1 | = x + 1]Xcont

P[Y = 1 | = x]Xcont

Categorical features (factors) are first converted to indicator variables and then the
model fits separate coefficients for each level of the factor. Coefficients corresponding to
a specific indicator variable give the increase/decrease in the log odds of the outcome in
case the observa�on is recorded with that level.

βfactor = log()
P[Y = 1 | = L]Xfac

P[Y = 1 | ≠ L]Xfac

coef(logit_fit)

(Intercept) gre gpa rank2 rank3
-2.662567353 0.000921435 0.658045298 -0.510004503 -1.560051191
rank4
-1.129252168

For every unit increase in gre, the log odds of admi�ed (versus rejected)
increases by 9.214349810^{-4}.

For every unit increase in gpa, the log odds increases by 0.6580453.

There are three coefficients for the rank variable, e.g. a student a�ending a
college with rank 2, one with rank 1 (base level), has the log admission odds
decreased by -0.5100045.

≈

≈

≈

You can get the confidence intervals for the coefficients with the confint() fuinc�on

confint(logit_fit)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -5.595691918 0.172732111
gre -0.001778273 0.003647635
gpa -0.181398218 1.522814525
rank2 -1.289858306 0.260377700
rank3 -2.483360377 -0.677844965
rank4 -2.140151201 -0.167386365

The CI are away from zero which indicates significance.95%

summary(logit_fit)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial",
data = train)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4795 -0.9377 -0.7004 1.1883 2.0539

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6625674 1.4651841 -1.817 0.069183 .
gre 0.0009214 0.0013789 0.668 0.503979
gpa 0.6580453 0.4329230 1.520 0.128510
rank2 -0.5100045 0.3935431 -1.296 0.194999
rank3 -1.5600512 0.4583036 -3.404 0.000664 ***
rank4 -1.1292522 0.5002488 -2.257 0.023984 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 309.52 on 239 degrees of freedom
Residual deviance: 289.83 on 234 degrees of freedom
AIC: 301.83

Number of Fisher Scoring iterations: 4

Rank variable effect is given with three different coeffients.

We can sse wald.test() func�on from the aod package to test the overall effect of
‘rank’.

install.packages(aod)
library(aod)
wald.test(b = coef(logit_fit), Sigma = vcov(logit_fit), Terms = 4:6)

Wald test:

Chi-squared test:
X2 = 14.0, df = 3, P(> X2) = 0.0029

b supplies the coefficients,
Sigma supplies the variance covariance matrix of the error terms,
Terms indices of the coefficients to be tested; here 4, 5, and 6,
corresponding to ‘rank’.

The p-value indicates that the overall effect of rank is sta�s�cally significant.

Fi�ed valuesFi�ed values
library(modelr)
head(train %>% add_predictions(logit_fit, var = "log_odds"))

A tibble: 6 x 5
admit gre gpa rank log_odds
<fct> <int> <dbl> <fct> <dbl>
1 rejected 640 3.67 3 -1.22
2 admitted 700 3.52 4 -0.830
3 rejected 400 3.35 3 -1.65
4 rejected 580 3.51 2 -0.328
5 admitted 640 3.19 4 -1.10
6 admitted 580 3.58 1 0.228

(train <- train %>%
 mutate(
 admit_odds = predict(logit_fit),
 admit_prob = predict(logit_fit, type = "response"),
 admit_pred = factor(admit_prob < 0.5, levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted")),
 admit_pred2 = factor(admit_odds < 0, levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted"))
))

A tibble: 240 x 8
admit gre gpa rank admit_odds admit_prob admit_pred admit_pred2
<fct> <int> <dbl> <fct> <dbl> <dbl> <fct> <fct>
1 rejected 640 3.67 3 -1.22 0.228 rejected rejected
2 admitted 700 3.52 4 -0.830 0.304 rejected rejected
3 rejected 400 3.35 3 -1.65 0.161 rejected rejected
4 rejected 580 3.51 2 -0.328 0.419 rejected rejected
5 admitted 640 3.19 4 -1.10 0.249 rejected rejected
6 admitted 580 3.58 1 0.228 0.557 admitted admitted
7 rejected 560 3 36 3 1 50 0 183 rejected rejected

7 rejected 560 3.36 3 -1.50 0.183 rejected rejected
8 rejected 460 3.77 3 -1.32 0.211 rejected rejected
9 admitted 560 2.98 1 -0.186 0.454 rejected rejected
10 rejected 580 3.02 2 -0.651 0.343 rejected rejected
... with 230 more rows

Predic�onsPredic�ons
Predic�ons can be computed using predict() func�on, with the argument
type = "response". Otherwise, the default will compute predic�ons on the scale
of the linear predictors.

Must have the same column names as the variables in the model
new_students <- data.frame(
 gre = c(670, 790, 550),
 gpa = c(3.56, 4.00, 3.87),
 rank = factor(c(1, 2, 2)))

The output is the probability of admissions for each of the new students.
new_students <- new_students %>%
 mutate(
 admit_odds = predict(logit_fit, newdata = new_students),
 admit_pred = factor(admit_odds < 0, levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted"))
)
new_students

gre gpa rank admit_odds admit_pred
1 670 3.56 1 0.2974353 admitted
2 790 4.00 2 0.1875430 admitted
3 550 3.87 2 -0.1191473 rejected

Mul�ple modelsMul�ple models
logit_fit2 <- glm(
 admit ~ rank, data = train, family = "binomial")

valid <- valid %>%
 mutate(
 admit_odds_fit1 = predict(logit_fit, newdata = valid),
 admit_odds_fit2 = predict(logit_fit2, newdata = valid),
 admit_fit1 = factor(admit_odds_fit1 < 0,
 levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted")),
 admit_fit2 = factor(admit_odds_fit2 < 0,
 levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted"))
)
valid

A tibble: 80 x 8
admit gre gpa rank admit_odds_fit1 admit_odds_fit2 admit_fit1
<fct> <int> <dbl> <fct> <dbl> <dbl> <fct>
1 reje… 340 2.92 3 -1.99 -1.41 rejected
2 reje… 660 3.31 4 -1.01 -1.03 rejected
3 admi… 300 2.84 2 -1.03 -0.389 rejected
4 reje… 500 4 3 -1.13 -1.41 rejected
5 reje… 780 3.87 4 -0.526 -1.03 rejected
6 reje… 600 3.63 3 -1.28 -1.41 rejected
7 reje… 540 3.78 4 -0.807 -1.03 rejected
8 admi… 800 3.74 1 0.536 0.163 admitted
9 admi… 800 3.43 2 -0.178 -0.389 rejected
10 admi… 740 2.97 2 -0.536 -0.389 rejected
... with 70 more rows, and 1 more variable: admit_fit2 <fct>

Evalua�ng accuracyEvalua�ng accuracy
Confusion Matrix for model 1
(confusion_matrix_fit1 <- table(true = valid$admit, pred = valid$admit_fit1))

pred
true rejected admitted
rejected 56 3
admitted 16 5

Confusion Matrix for model 2
(confusion_matrix_fit2 <- table(true = valid$admit, pred = valid$admit_fit2))

pred
true rejected admitted
rejected 57 2
admitted 16 5

Accuracy for model 1
(accuracy_fit1 <- sum(diag(confusion_matrix_fit1))/sum(confusion_matrix_fit1))

[1] 0.7625

Accuracy for model 2
(accuracy_fit2 <- sum(diag(confusion_matrix_fit2))/sum(confusion_matrix_fit2))

[1] 0.775

We choose a simpler model logit_fit2

Expected Expected logit_fit2logit_fit2 performance performance
Performance of our chosen model, logit_fit2 can be evaluated on the testset

test <- test %>%
 mutate(
 admit_odds = predict(logit_fit2, newdata = test),
 admit_pred = factor(admit_odds < 0,
 levels = c(TRUE, FALSE),
 labels = c("rejected", "admitted"))
)

(test_confusion_matrix <- table(pred = test$admit, true = test$admit_pred))

true
pred rejected admitted
rejected 48 9
admitted 15 8

(test_accuracy <- sum(diag(test_confusion_matrix))/sum(test_confusion_matrix))

[1] 0.7

So, you should expect your model accuracy to be around 0.7 for a new dataset you
collect later.

ExerciseExercise

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 2.

Random ForestRandom Forest

Random ForestRandom Forest
Random Forest is an ensemble learning method based on classifica�on and
regression trees, CART, proposed by in 2001.
RF can be used to perform both classifica�on and regression.
RF models are robust as they combine predic�ons calculated from a large
number of decision trees (a forest).
Details on RF can be found in Chapter 8 of and Chapter 15 ; also a good
write-up can also be found

Breinman

ISL ESL
here

http://link.springer.com/article/10.1023/A:1010933404324
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf

Decision treesDecision trees
Cool visualiza�on explaining what decision trees are:

Example of decision trees

link

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Tree bagging AlgorithmTree bagging Algorithm
Suppse we have an input data matrix, and a response vector, .X ∈ ℝN×p Y ∈ ℝN

For b = 1, 2, …, B:

 1. Generate a random subset of the data conta�ning

 observa�ons sampled with replacement.

 2. Train a decision tree on

 3. Predict the outcome for unseen (complement) samples

A�erwards, combine predic�ons from all decision trees and compute the average
predicted outcome .

(,)Xb Yb n < N

Tb (,)Xb Yb

N − n (,)X ′
b
Y ′
b

Averaging over a collec�on of decision trees makes the predic�ons more stable.

Decision trees for bootrap samplesDecision trees for bootrap samples

Source: Chapter 8 ESL

https://web.stanford.edu/~hastie/ElemStatLearn/

Random Forest Characteris�csRandom Forest Characteris�cs
Random forests differ in only one way from tree bagging: it uses a modified
tree learning algorithm some�mes called feature bagging.

At each candidate split in the learning process, only a random subset of the
features is included in a pool from which the variables can be selected for
spli�ng the branch.

Introducing randomness into the candidate spli�ng variables, reduces
correla�on between the generated trees.

Source: link

http://www.slideshare.net/satnam74/india-software-developers-conference-2013-bangalore

Wine QualityWine Quality
UCI ML Repo includes two datasets on red and white variants of the Portuguese

. The datasets contain informa�on on physicochemical and sensory
characteris�cs of the wine quality score.

“Vinho
Verde” wine

We will use the white wines dataset to classify wines according to their quality classes.

url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white
wines <- read.csv(url, sep = ";")
head(wines, 6)

fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
1 7.0 0.27 0.36 20.7 0.045
2 6.3 0.30 0.34 1.6 0.049
3 8.1 0.28 0.40 6.9 0.050
4 7.2 0.23 0.32 8.5 0.058
5 7.2 0.23 0.32 8.5 0.058
6 8.1 0.28 0.40 6.9 0.050
free.sulfur.dioxide total.sulfur.dioxide density pH sulphates alcohol
1 45 170 1.0010 3.00 0.45 8.8
2 14 132 0.9940 3.30 0.49 9.5
3 30 97 0.9951 3.26 0.44 10.1
4 47 186 0.9956 3.19 0.40 9.9
5 47 186 0.9956 3.19 0.40 9.9
6 30 97 0.9951 3.26 0.44 10.1
quality
1 6
2 6
3 6
4 6
5 6
6 6

http://www.vinhoverde.pt/

Class FrequencyClass Frequency
table(wines$quality)

3 4 5 6 7 8 9
20 163 1457 2198 880 175 5

ggplot(wines, aes(x = quality)) +
 geom_bar() + theme_classic() +
 ggtitle("Barplot for Quality Scores")

The classes are ordered and not balanced (munch more normal wines than
excellent/poor ones).

To make things easier, we will wines into “good”, “average” and “bad” categories.

The new classes will be more balanced, and it will be easier to fit the model.

qualClass <- function(quality) {
 if(quality > 6) return("good")
 if(quality < 6) return("bad")
 return("average")
}
wines <- wines %>%
 mutate(taste = sapply(quality, qualClass),
 taste = factor(taste, levels = c("bad", "average", "good")))
head(wines)

fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
1 7.0 0.27 0.36 20.7 0.045
2 6.3 0.30 0.34 1.6 0.049
3 8.1 0.28 0.40 6.9 0.050
4 7.2 0.23 0.32 8.5 0.058
5 7.2 0.23 0.32 8.5 0.058
6 8.1 0.28 0.40 6.9 0.050
free.sulfur.dioxide total.sulfur.dioxide density pH sulphates alcohol
1 45 170 1.0010 3.00 0.45 8.8
2 14 132 0.9940 3.30 0.49 9.5
3 30 97 0.9951 3.26 0.44 10.1
4 47 186 0.9956 3.19 0.40 9.9
5 47 186 0.9956 3.19 0.40 9.9
6 30 97 0.9951 3.26 0.44 10.1
quality taste
1 6 average
2 6 average
3 6 average
4 6 average
5 6 average
6 6 average

table(wines$quality)

3 4 5 6 7 8 9
20 163 1457 2198 880 175 5

ggplot(wines, aes(x = taste)) +
 geom_bar() + theme_classic() +
 ggtitle("Barplot for Quality Scores")

Spli�ng dataSpli�ng data
We include 60% of the data in a train set and the remaining into a test set.

set.seed(98475)
idx <- sample(nrow(wines), 0.6 * nrow(wines))
train <- wines[idx,]
test <- wines[-idx,]
dim(train)

[1] 2938 13

dim(test)

[1] 1960 13

Random Forest in RRandom Forest in R
In R there is a convenient func�on randomForest from randomForest package.

install.packages("randomForest")
library(randomForest)
wines_fit_rf <- randomForest(
 taste ~ . - quality, data = train,
 mtry = 5, ntree = 500, importance = TRUE)

Note that in the formula ‘taste ~ . - quality’ means we include all
features EXCEPT for ‘quality’ (the response variable).

mtry - the number of variables randomly sampled as candidates at each
split. Defaults: for classifica�on – and for regression – , where is
number of all variables in the model.

ntree - the number of trees in the forest.

importance - whether importance of predictors be computed.

p‾√ p/3 p

Observe, that RF is good at dis�nguishing “bad” wines from“good” wines, but s�ll
struggles when it comes to “average” wines.

wines_fit_rf

Call:
randomForest(formula = taste ~ . - quality, data = train, mtry = 5, ntree = 500, import
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 5

OOB estimate of error rate: 31.31%
Confusion matrix:
bad average good class.error
bad 681 272 15 0.2964876
average 219 966 135 0.2681818
good 20 259 371 0.4292308

Model AccuracyModel Accuracy
You should always evaluate your model’s performance on a test set, which
was set aside and not observed by the method at all.

In case of RF, performance on train and test set should be similar; this is
because the method averages predic�ons computed by individual trees for
observa�ons unseen by the tree.

Inspect the confusion matrix to asses the model accuracy.

(confusion_matrix <- table(
 true = test$taste, pred = predict(wines_fit_rf, newdata = test)))

pred
true bad average good
bad 482 181 9
average 149 669 60
good 13 143 254

(accuracy_rf <- sum(diag(confusion_matrix)) / sum(confusion_matrix))

[1] 0.7168367

h�ps://stats.stackexchange.com/ques�ons/197827/how-to-interpret-mean-decrease-in-
accuracy-and-mean-decrease-gini-in-random-fore

Look at variable importance:
importance(wines_fit_rf)

bad average good MeanDecreaseAccuracy
fixed.acidity 30.15194 30.17027 29.82500 51.71162
volatile.acidity 64.10513 51.51792 57.95579 90.28951
citric.acid 28.54081 32.93660 31.90320 46.52323
residual.sugar 29.23441 35.39843 27.38350 56.88708
chlorides 36.06739 26.80210 39.22203 49.98833
free.sulfur.dioxide 37.74602 35.26059 29.29246 57.27752
total.sulfur.dioxide 25.84618 23.53196 34.53854 45.42788
density 26.92925 28.25958 29.45976 43.55052
pH 33.72925 31.09405 42.54602 56.16315
sulphates 29.16720 28.56807 30.09379 47.44873
alcohol 81.11168 36.20917 66.60965 94.30226
MeanDecreaseGini
fixed.acidity 133.9582
volatile.acidity 205.1542
citric.acid 143.4607
residual.sugar 159.3942
chlorides 158.9609
free.sulfur.dioxide 173.0973
total.sulfur.dioxide 160.1464
density 186.5196
pH 162.8367
sulphates 138.5101
alcohol 258.7888

https://stats.stackexchange.com/questions/197827/how-to-interpret-mean-decrease-in-accuracy-and-mean-decrease-gini-in-random-fore

What seems to be the conclusion? What are the characteris�cs that are predic�ve of the
wine quality score?

varImpPlot(wines_fit_rf)

ExerciseExercise

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 3.

