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Hypothesis tes�ngHypothesis tes�ng



Hypothesis tes�ng can answer ques�ons:Hypothesis tes�ng can answer ques�ons:
Is the measured quan�ty equal to/higher/lower than a given threshold?
e.g. is the number of faulty items in an order sta�s�cally higher than the one
guaranteed by a manufacturer?
Is there a difference between two groups or observa�ons? e.g. Do treated
pa�ent have a higher survival rate than the untreated ones?
Is the level of one quan�ty related to the value of the other quan�ty? e.g. Is
hyperac�vity related to ea�ng sugar? Is lung cancer related to smoking?



To perform a hypothesis test you need to:To perform a hypothesis test you need to:
1. Define the null and alterna�ve hypotheses.
2. Choose level of significance .
3. Pick and compute test sta�s�cs.
4. Compute the p-value.
5. Check whether to reject the null hypothesis by comparing p-value to .
6. Draw conclusion from the test.

α

α



Null and alterna�ve hypothesesNull and alterna�ve hypotheses
The null hypothesis ( ): A statement assumed to be true unless it can be shown to be
incorrect beyond a reasonable doubt. This is something one usually a�empts to disprove
or discredit.

H0

The alternate hypothesis ( ): A claim that is contradictory to H0 and what we
conclude when we reject H0.

H1

H0 and H1 are on purporse set up to be contradictory, so that one can collect and
examine data to decide if there is enough evidence to reject the null hypothesis or not.





Student’s t-testStudent’s t-test
William Gosset (1908), a chemist at the Guiness brewery.
Published in Biometrika under a pseudonym Student.
Used to select best yielding varie�es of barley.
Now one of the standard/tradi�onal methods for hypothesis tes�ng.

Among the typical applica�ons:

Comparing popula�on mean to a constant value
Comparing the means of two popula�ons
Comparing the slope of a regression line to a constant

In general, used when the test sta�s�c would follow a normal distribu�on if the value of
a scaling term in the test sta�s�c were known.



Distribu�on of the t-sta�s�cDistribu�on of the t-sta�s�c

If , the empirical es�mates for mean and variance are: 
and 
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p-valuep-value
p-value is the probability of obtaining the same or “more extreme” event
than the one observed, assuming the null hypothesis holds (is true).

A small p-value, typically < 0.05, indicates strong evidence against the null
hypothesis; in this case you can reject the null hypothesis.

A large p-value, > 0.05, indicates weak evidence against the null hypothesis;
in this case, you do NOT reject the null hypothesis.



p − value = P[observations ∣ hypothesis] ≠ P[hypothesis ∣ ovservations]

p-values should NOT be used a “ranking”/“scoring” system for your hypotheses



Is the mean flight arrival delay sta�s�cally
equal to 0?

 
Test the null hypothesis:

where  is where  is the average arrival
delay.

: μ = = 0H0 μ0

: μ ≠ = 0Ha μ0

μ μ

Two-sided test of the meanTwo-sided test of the mean



library(tidyverse) 
library(nycflights13) 
mean(flights$arr_delay, na.rm = T)

## [1] 6.895377

Is this sta�s�cally significant?

( tt = t.test(x=flights$arr_delay, mu=0, alternative="two.sided" ) )

##  
##  One Sample t-test 
##  
## data:  flights$arr_delay 
## t = 88.39, df = 327340, p-value < 2.2e-16 
## alternative hypothesis: true mean is not equal to 0 
## 95 percent confidence interval: 
##  6.742478 7.048276 
## sample estimates: 
## mean of x  
##  6.895377



The func�on t.test returns an object containing the following components:

names(tt)

## [1] "statistic"   "parameter"   "p.value"     "conf.int"    "estimate"    
## [6] "null.value"  "alternative" "method"      "data.name"

# The p-value: 
tt$p.value

## [1] 0

# The 95% confidence interval for the mean: 
tt$conf.int

## [1] 6.742478 7.048276 
## attr(,"conf.level") 
## [1] 0.95



One-sided can be more powerful, but the
intepreta�on is more difficult.

 
Test the null hypothesis:

: μ = = 0H0 μ0

: μ < = 0Ha μ0

t.test(x, mu=0, alternative="less")

One-sided test of the meanOne-sided test of the mean



Is the average delay 5 or is it lower?

( tt = t.test(x=flights$arr_delay, mu=5, alternative="less" ) )

##  
##  One Sample t-test 
##  
## data:  flights$arr_delay 
## t = 24.296, df = 327340, p-value = 1 
## alternative hypothesis: true mean is less than 5 
## 95 percent confidence interval: 
##      -Inf 7.023694 
## sample estimates: 
## mean of x  
##  6.895377

Failure to reject is not acceptance of the null hypothesis.



Tes�ng difference between groupsTes�ng difference between groups
Is the average arrival delay the same for the winter and summer?

 
Test the null hypothesis:

: =H0 μa μb

: ≠Ha μa μb

where  mean arr_delay in the winter and  is the mean arr_delay in the
summer.

μa μb

t.test(x, y)



Seasonal differences in flight delaySeasonal differences in flight delay
flights %>%  
  mutate(season = cut(month, breaks = c(0,3,6,9,12))) %>%  
  ggplot(aes(x = season, y = arr_delay)) + geom_boxplot (alpha=0.1) + 
    xlab("Season" ) + ylab("Arrival delay" )

## Warning: Removed 9430 rows containing non-finite values (stat_boxplot).



Seasonal differences in flight delaySeasonal differences in flight delay
flights %>%  
  filter(arr_delay < 120) %>% 
  mutate(season = cut(month, breaks = c(0,3,6,9,12))) %>%  
  ggplot(aes(x = season, y = arr_delay)) + geom_boxplot (alpha=0.01) + 
    xlab("Season" ) + ylab("Arrival delay" )



Tes�ng seasonal differences in flight delayTes�ng seasonal differences in flight delay
flights.winter = filter(flights, month %in% c(1,2,3)) 
flights.summer = filter(flights, month %in% c(7,8,9)) 
t.test(x=flights.winter$arr_delay, y=flights.summer$arr_delay)

##  
##  Welch Two Sample t-test 
##  
## data:  flights.winter$arr_delay and flights.summer$arr_delay 
## t = -2.4383, df = 161250, p-value = 0.01476 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.9780344 -0.1063691 
## sample estimates: 
## mean of x mean of y  
##  5.857851  6.400052



ExerciseExercise
 

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 1.



Classifica�onClassifica�on
Classifica�on is a supervised methood which deals with predic�on outcomes
or response variables that are qualita�ve, or categorical.

The task is to classify or assign each observa�on to a category or a class.

Examples of classifica�on problems include:
predic�ng what medical condi�on or disease a pa�ent has base on
their symptoms,
determining cell types based on their gene expression profiles
(single cell RNA-seq data).
detec�ng fraudulent transac�ons based on the transac�on history



Logis�c RegressionLogis�c Regression



Logis�c RegressionLogis�c Regression
Logis�c regression is actually used for classifica�on, and not regression tasks, 

.

The name regression comes from the fact that the method fits a linear
func�on to a con�nuous quan�ty, the log odds of the response.

Y ∈ {0, 1}

p = P[Y = 1 ∣ X]

log( ) = Xβ = + x
p

1 − p
β0 βT

1

The method performs binary classifica�on (k = 2), but can be generalized to
handle  classes (mul�nomial logis�c regression).k > 2



g(p)

(η)g−1

η

E[Y]

= log( ),  ( logit a link function ) 
p

1 − p

= ,  ( logistic function ) 
1

1 + e−η

= Xβ,  ( linear predictor ) 

= P[Y = 1 ∣ X = x]  ( probability of outcome ) 

= p = (η)g−1

=
1

1 + e−Xβ







Grad School AdmissionsGrad School Admissions
Suppose we would like to predict students’ admission to graduate school based on their
GRE, GPA, and the rank of their undergraduate ins�tu�on.

admissions <- read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

## Parsed with column specification: 
## cols( 
##   admit = col_integer(), 
##   gre = col_integer(), 
##   gpa = col_double(), 
##   rank = col_integer() 
## )

admissions

## # A tibble: 400 x 4 
##    admit   gre   gpa  rank 
##    <int> <int> <dbl> <int> 
##  1     0   380  3.61     3 
##  2     1   660  3.67     3 
##  3     1   800  4        1 
##  4     1   640  3.19     4 
##  5     0   520  2.93     4 
##  6     1   760  3        2 
##  7     1   560  2.98     1 
##  8     0   400  3.08     2 
##  9     1   540  3.39     3 
## 10     0   700  3.92     2 
## # ... with 390 more rows



summary(admissions)

##      admit             gre             gpa             rank       
##  Min.   :0.0000   Min.   :220.0   Min.   :2.260   Min.   :1.000   
##  1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130   1st Qu.:2.000   
##  Median :0.0000   Median :580.0   Median :3.395   Median :2.000   
##  Mean   :0.3175   Mean   :587.7   Mean   :3.390   Mean   :2.485   
##  3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670   3rd Qu.:3.000   
##  Max.   :1.0000   Max.   :800.0   Max.   :4.000   Max.   :4.000

sapply(admissions, sd)

##       admit         gre         gpa        rank  
##   0.4660867 115.5165364   0.3805668   0.9444602

Check that there are observa�ons included in each subgroup, and whether the data is
balanced:

with(admissions, table(admit, rank))

##      rank 
## admit  1  2  3  4 
##     0 28 97 93 55 
##     1 33 54 28 12



Logis�c Regression in RLogis�c Regression in R
In R logis�c regression can be done using a func�on glm().
glm stands for Generalized Linear Model.
The func�on can fit many other regression models. Use ?glm to learn more.
For cases with  classes, multinom() func�on from nnet package can
be used. To see how go over this .

k > 2
example

https://stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/


Note that currently the column ‘admit’ and ‘rank’ in admissions are integers.

sapply(admissions, class)

##     admit       gre       gpa      rank  
## "integer" "integer" "numeric" "integer"

We convert the two columns to factors.

admissions <- mutate(admissions, 
  admit = factor(admit, levels = c(0, 1), labels = c("rejected", "admitted")), 
  rank = factor(rank, levels = 1:4) 
) 
admissions

## # A tibble: 400 x 4 
##    admit      gre   gpa rank  
##    <fct>    <int> <dbl> <fct> 
##  1 rejected   380  3.61 3     
##  2 admitted   660  3.67 3     
##  3 admitted   800  4    1     
##  4 admitted   640  3.19 4     
##  5 rejected   520  2.93 4     
##  6 admitted   760  3    2     
##  7 admitted   560  2.98 1     
##  8 rejected   400  3.08 2     
##  9 admitted   540  3.39 3     
## 10 rejected   700  3.92 2     
## # ... with 390 more rows



Split dataSplit data
Divide data into train and test set so that we can evaluate the model accuracy later on.
Here we use 60%-20%-20% split.

set.seed(78356) 
n <- nrow(admissions) 
idx <- sample(1:n, size = n) 
train.idx <- idx[seq(1, floor(0.6*n))] 
valid.idx <- idx[seq(floor(0.6*n)+1, floor(0.8*n))] 
 
train <- admissions[train.idx, ] 
valid <- admissions[valid.idx, ] 
test <- admissions[-c(train.idx, valid.idx), ] 
 
nrow(train)

## [1] 240

nrow(valid)

## [1] 80

nrow(test)

## [1] 80



Fi�ng a logis�c regression modelFi�ng a logis�c regression model
logit_fit <- glm( 
    admit ~ gre + gpa + rank, data = train, family = "binomial")

The first argument, 
formula = admit ~ gre + gpa + rank, 
specifies the linear predictor part, .

You need to set the family to family = "binomial" equivalent to
choosing a logis�c regression, i.e. using a logit link func�on  in a GLM
model.

η = Xβ

g(⋅)



Logis�c regression coefficients for con�nuous predictors (covariates) give the log fold
change in the odds of the outcome corresponding to a unit increase in the predictor.

βcont = log( )
P[Y = 1 | = x + 1]Xcont

P[Y = 1 | = x]Xcont

Categorical features (factors) are first converted to indicator variables and then the
model fits separate coefficients for each level of the factor. Coefficients corresponding to
a specific indicator variable give the increase/decrease in the log odds of the outcome in
case the observa�on is recorded with that level.

βfactor = log( )
P[Y = 1 | = L]Xfac

P[Y = 1 | ≠ L]Xfac



coef(logit_fit)

##  (Intercept)          gre          gpa        rank2        rank3  
## -2.662567353  0.000921435  0.658045298 -0.510004503 -1.560051191  
##        rank4  
## -1.129252168

 

For every unit increase in gre, the log odds of admi�ed (versus rejected)
increases by  9.214349810^{-4}.

For every unit increase in gpa, the log odds increases by  0.6580453.

There are three coefficients for the rank variable, e.g. a student a�ending a
college with rank 2, one with rank 1 (base level), has the log admission odds
decreased by  -0.5100045.

≈

≈

≈



You can get the confidence intervals for the coefficients with the confint() fuinc�on

confint(logit_fit)

## Waiting for profiling to be done...

##                    2.5 %       97.5 % 
## (Intercept) -5.595691918  0.172732111 
## gre         -0.001778273  0.003647635 
## gpa         -0.181398218  1.522814525 
## rank2       -1.289858306  0.260377700 
## rank3       -2.483360377 -0.677844965 
## rank4       -2.140151201 -0.167386365

The  CI are away from zero which indicates significance.95%



summary(logit_fit)

##  
## Call: 
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",  
##     data = train) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.4795  -0.9377  -0.7004   1.1883   2.0539   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -2.6625674  1.4651841  -1.817 0.069183 .   
## gre          0.0009214  0.0013789   0.668 0.503979     
## gpa          0.6580453  0.4329230   1.520 0.128510     
## rank2       -0.5100045  0.3935431  -1.296 0.194999     
## rank3       -1.5600512  0.4583036  -3.404 0.000664 *** 
## rank4       -1.1292522  0.5002488  -2.257 0.023984 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 309.52  on 239  degrees of freedom 
## Residual deviance: 289.83  on 234  degrees of freedom 
## AIC: 301.83 
##  
## Number of Fisher Scoring iterations: 4



Rank variable effect is given with three different coeffients.

We can sse wald.test() func�on from the aod package to test the overall effect of
‘rank’.

# install.packages(aod) 
library(aod) 
wald.test(b = coef(logit_fit), Sigma = vcov(logit_fit), Terms = 4:6)

## Wald test: 
## ---------- 
##  
## Chi-squared test: 
## X2 = 14.0, df = 3, P(> X2) = 0.0029

b supplies the coefficients,
Sigma supplies the variance covariance matrix of the error terms,
Terms indices of the coefficients to be tested; here 4, 5, and 6,
corresponding to ‘rank’.

The p-value indicates that the overall effect of rank is sta�s�cally significant.



Fi�ed valuesFi�ed values
library(modelr) 
head(train %>% add_predictions(logit_fit, var = "log_odds"))

## # A tibble: 6 x 5 
##   admit      gre   gpa rank  log_odds 
##   <fct>    <int> <dbl> <fct>    <dbl> 
## 1 rejected   640  3.67 3       -1.22  
## 2 admitted   700  3.52 4       -0.830 
## 3 rejected   400  3.35 3       -1.65  
## 4 rejected   580  3.51 2       -0.328 
## 5 admitted   640  3.19 4       -1.10  
## 6 admitted   580  3.58 1        0.228

(train <- train %>% 
    mutate( 
        admit_odds = predict(logit_fit), 
        admit_prob = predict(logit_fit, type = "response"), 
        admit_pred = factor(admit_prob < 0.5, levels = c(TRUE, FALSE),  
                            labels = c("rejected", "admitted")), 
        admit_pred2 = factor(admit_odds < 0, levels = c(TRUE, FALSE),  
                            labels = c("rejected", "admitted")) 
    ))

## # A tibble: 240 x 8 
##    admit      gre   gpa rank  admit_odds admit_prob admit_pred admit_pred2 
##    <fct>    <int> <dbl> <fct>      <dbl>      <dbl> <fct>      <fct>       
##  1 rejected   640  3.67 3         -1.22       0.228 rejected   rejected    
##  2 admitted   700  3.52 4         -0.830      0.304 rejected   rejected    
##  3 rejected   400  3.35 3         -1.65       0.161 rejected   rejected    
##  4 rejected   580  3.51 2         -0.328      0.419 rejected   rejected    
##  5 admitted   640  3.19 4         -1.10       0.249 rejected   rejected    
##  6 admitted   580  3.58 1          0.228      0.557 admitted   admitted    
## 7 rejected 560 3 36 3 1 50 0 183 rejected rejected



##  7 rejected   560  3.36 3         -1.50       0.183 rejected   rejected    
##  8 rejected   460  3.77 3         -1.32       0.211 rejected   rejected    
##  9 admitted   560  2.98 1         -0.186      0.454 rejected   rejected    
## 10 rejected   580  3.02 2         -0.651      0.343 rejected   rejected    
## # ... with 230 more rows



Predic�onsPredic�ons
Predic�ons can be computed using predict() func�on, with the argument
type = "response". Otherwise, the default will compute predic�ons on the scale
of the linear predictors.

# Must have the same column names as the variables in the model  
new_students <- data.frame( 
    gre = c(670, 790, 550),  
    gpa = c(3.56, 4.00, 3.87),  
    rank = factor(c(1, 2, 2))) 
 
# The output is the probability of admissions for each of the new students. 
new_students <- new_students %>%  
  mutate( 
    admit_odds = predict(logit_fit, newdata = new_students), 
    admit_pred = factor(admit_odds < 0, levels = c(TRUE, FALSE), 
                   labels = c("rejected", "admitted")) 
  ) 
new_students

##   gre  gpa rank admit_odds admit_pred 
## 1 670 3.56    1  0.2974353   admitted 
## 2 790 4.00    2  0.1875430   admitted 
## 3 550 3.87    2 -0.1191473   rejected



Mul�ple modelsMul�ple models
logit_fit2 <- glm( 
    admit ~ rank, data = train, family = "binomial") 
 
valid <- valid %>% 
    mutate( 
        admit_odds_fit1 = predict(logit_fit, newdata = valid), 
        admit_odds_fit2 = predict(logit_fit2, newdata = valid), 
        admit_fit1 = factor(admit_odds_fit1 < 0,  
                            levels = c(TRUE, FALSE),  
                            labels = c("rejected", "admitted")), 
        admit_fit2 = factor(admit_odds_fit2 < 0,  
                            levels = c(TRUE, FALSE),  
                            labels = c("rejected", "admitted")) 
    ) 
valid

## # A tibble: 80 x 8 
##    admit   gre   gpa rank  admit_odds_fit1 admit_odds_fit2 admit_fit1 
##    <fct> <int> <dbl> <fct>           <dbl>           <dbl> <fct>      
##  1 reje…   340  2.92 3              -1.99           -1.41  rejected   
##  2 reje…   660  3.31 4              -1.01           -1.03  rejected   
##  3 admi…   300  2.84 2              -1.03           -0.389 rejected   
##  4 reje…   500  4    3              -1.13           -1.41  rejected   
##  5 reje…   780  3.87 4              -0.526          -1.03  rejected   
##  6 reje…   600  3.63 3              -1.28           -1.41  rejected   
##  7 reje…   540  3.78 4              -0.807          -1.03  rejected   
##  8 admi…   800  3.74 1               0.536           0.163 admitted   
##  9 admi…   800  3.43 2              -0.178          -0.389 rejected   
## 10 admi…   740  2.97 2              -0.536          -0.389 rejected   
## # ... with 70 more rows, and 1 more variable: admit_fit2 <fct>



Evalua�ng accuracyEvalua�ng accuracy
# Confusion Matrix for model 1 
(confusion_matrix_fit1 <- table(true = valid$admit, pred = valid$admit_fit1))

##           pred 
## true       rejected admitted 
##   rejected       56        3 
##   admitted       16        5

# Confusion Matrix for model 2 
(confusion_matrix_fit2 <- table(true = valid$admit, pred = valid$admit_fit2))

##           pred 
## true       rejected admitted 
##   rejected       57        2 
##   admitted       16        5

# Accuracy for model 1 
(accuracy_fit1 <- sum(diag(confusion_matrix_fit1))/sum(confusion_matrix_fit1))

## [1] 0.7625

# Accuracy for model 2 
(accuracy_fit2 <- sum(diag(confusion_matrix_fit2))/sum(confusion_matrix_fit2))

## [1] 0.775

We choose a simpler model logit_fit2



Expected Expected logit_fit2logit_fit2 performance performance
Performance of our chosen model, logit_fit2 can be evaluated on the testset

test <- test %>% 
    mutate( 
        admit_odds = predict(logit_fit2, newdata = test), 
        admit_pred = factor(admit_odds < 0,  
                             levels = c(TRUE, FALSE), 
                             labels = c("rejected", "admitted")) 
    ) 
     
(test_confusion_matrix <- table(pred = test$admit, true = test$admit_pred))

##           true 
## pred       rejected admitted 
##   rejected       48        9 
##   admitted       15        8

(test_accuracy <- sum(diag(test_confusion_matrix))/sum(test_confusion_matrix))

## [1] 0.7

So, you should expect your model accuracy to be around 0.7 for a new dataset you
collect later.



ExerciseExercise
 

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 2.



Random ForestRandom Forest



Random ForestRandom Forest
Random Forest is an ensemble learning method based on classifica�on and
regression trees, CART, proposed by  in 2001.
RF can be used to perform both classifica�on and regression.
RF models are robust as they combine predic�ons calculated from a large
number of decision trees (a forest).
Details on RF can be found in Chapter 8 of  and Chapter 15 ; also a good
write-up can also be found 

Breinman

ISL ESL
here

http://link.springer.com/article/10.1023/A:1010933404324
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf


Decision treesDecision trees
Cool visualiza�on explaining what decision trees are: 

Example of decision trees

link

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/


Tree bagging AlgorithmTree bagging Algorithm
Suppse we have an input data matrix,  and a response vector, .X ∈ ℝN×p Y ∈ ℝN

For b = 1, 2, …, B:

 1. Generate a random subset of the data  conta�ning 

 observa�ons sampled with replacement.

 2. Train a decision tree  on 

 3. Predict the outcome for  unseen (complement) samples 

A�erwards, combine predic�ons from all decision trees and compute the average
predicted outcome .

( , )Xb Yb n < N

Tb ( , )Xb Yb

N − n ( , )X ′
b
Y ′
b

 

Averaging over a collec�on of decision trees makes the predic�ons more stable.



Decision trees for bootrap samplesDecision trees for bootrap samples

Source: Chapter 8 ESL

https://web.stanford.edu/~hastie/ElemStatLearn/


Random Forest Characteris�csRandom Forest Characteris�cs
Random forests differ in only one way from tree bagging: it uses a modified
tree learning algorithm some�mes called feature bagging.

At each candidate split in the learning process, only a random subset of the
features is included in a pool from which the variables can be selected for
spli�ng the branch.

Introducing randomness into the candidate spli�ng variables, reduces
correla�on between the generated trees.





Source: link

http://www.slideshare.net/satnam74/india-software-developers-conference-2013-bangalore


Wine QualityWine Quality
UCI ML Repo includes two datasets on red and white variants of the Portuguese 

. The datasets contain informa�on on physicochemical and sensory
characteris�cs of the wine quality score.

“Vinho
Verde” wine

We will use the white wines dataset to classify wines according to their quality classes.

url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white
wines <- read.csv(url, sep = ";") 
head(wines, 6)

##   fixed.acidity volatile.acidity citric.acid residual.sugar chlorides 
## 1           7.0             0.27        0.36           20.7     0.045 
## 2           6.3             0.30        0.34            1.6     0.049 
## 3           8.1             0.28        0.40            6.9     0.050 
## 4           7.2             0.23        0.32            8.5     0.058 
## 5           7.2             0.23        0.32            8.5     0.058 
## 6           8.1             0.28        0.40            6.9     0.050 
##   free.sulfur.dioxide total.sulfur.dioxide density   pH sulphates alcohol 
## 1                  45                  170  1.0010 3.00      0.45     8.8 
## 2                  14                  132  0.9940 3.30      0.49     9.5 
## 3                  30                   97  0.9951 3.26      0.44    10.1 
## 4                  47                  186  0.9956 3.19      0.40     9.9 
## 5                  47                  186  0.9956 3.19      0.40     9.9 
## 6                  30                   97  0.9951 3.26      0.44    10.1 
##   quality 
## 1       6 
## 2       6 
## 3       6 
## 4       6 
## 5       6 
## 6       6

http://www.vinhoverde.pt/


Class FrequencyClass Frequency
table(wines$quality)

##  
##    3    4    5    6    7    8    9  
##   20  163 1457 2198  880  175    5

ggplot(wines, aes(x = quality)) + 
  geom_bar() + theme_classic() + 
  ggtitle("Barplot for Quality Scores")



The classes are ordered and not balanced (munch more normal wines than
excellent/poor ones).



To make things easier, we will wines into “good”, “average” and “bad” categories.

The new classes will be more balanced, and it will be easier to fit the model.

qualClass <- function(quality) { 
  if(quality > 6) return("good") 
  if(quality < 6) return("bad") 
  return("average") 
} 
wines <- wines %>% 
    mutate(taste = sapply(quality, qualClass), 
           taste = factor(taste, levels = c("bad", "average", "good"))) 
head(wines)

##   fixed.acidity volatile.acidity citric.acid residual.sugar chlorides 
## 1           7.0             0.27        0.36           20.7     0.045 
## 2           6.3             0.30        0.34            1.6     0.049 
## 3           8.1             0.28        0.40            6.9     0.050 
## 4           7.2             0.23        0.32            8.5     0.058 
## 5           7.2             0.23        0.32            8.5     0.058 
## 6           8.1             0.28        0.40            6.9     0.050 
##   free.sulfur.dioxide total.sulfur.dioxide density   pH sulphates alcohol 
## 1                  45                  170  1.0010 3.00      0.45     8.8 
## 2                  14                  132  0.9940 3.30      0.49     9.5 
## 3                  30                   97  0.9951 3.26      0.44    10.1 
## 4                  47                  186  0.9956 3.19      0.40     9.9 
## 5                  47                  186  0.9956 3.19      0.40     9.9 
## 6                  30                   97  0.9951 3.26      0.44    10.1 
##   quality   taste 
## 1       6 average 
## 2       6 average 
## 3       6 average 
## 4       6 average 
## 5       6 average 
## 6       6 average



table(wines$quality)

##  
##    3    4    5    6    7    8    9  
##   20  163 1457 2198  880  175    5

ggplot(wines, aes(x = taste)) + 
  geom_bar() + theme_classic() + 
  ggtitle("Barplot for Quality Scores")



Spli�ng dataSpli�ng data
We include 60% of the data in a train set and the remaining into a test set.

set.seed(98475) 
idx <- sample(nrow(wines), 0.6 * nrow(wines)) 
train <- wines[idx, ] 
test <- wines[-idx, ] 
dim(train)

## [1] 2938   13

dim(test)

## [1] 1960   13



Random Forest in RRandom Forest in R
In R there is a convenient func�on randomForest from randomForest package.

# install.packages("randomForest") 
library(randomForest) 
wines_fit_rf <- randomForest( 
    taste ~ . - quality, data = train, 
    mtry = 5, ntree = 500, importance = TRUE)

Note that in the formula ‘taste ~ . - quality’ means we include all
features EXCEPT for ‘quality’ (the response variable).

mtry - the number of variables randomly sampled as candidates at each
split. Defaults: for classifica�on –  and for regression – , where  is
number of all variables in the model.

ntree - the number of trees in the forest.

importance - whether importance of predictors be computed.

p‾√ p/3 p



Observe, that RF is good at dis�nguishing “bad” wines from“good” wines, but s�ll
struggles when it comes to “average” wines.

wines_fit_rf

##  
## Call: 
##  randomForest(formula = taste ~ . - quality, data = train, mtry = 5,      ntree = 500, import
##                Type of random forest: classification 
##                      Number of trees: 500 
## No. of variables tried at each split: 5 
##  
##         OOB estimate of  error rate: 31.31% 
## Confusion matrix: 
##         bad average good class.error 
## bad     681     272   15   0.2964876 
## average 219     966  135   0.2681818 
## good     20     259  371   0.4292308



Model AccuracyModel Accuracy
You should always evaluate your model’s performance on a test set, which
was set aside and not observed by the method at all.

In case of RF, performance on train and test set should be similar; this is
because the method averages predic�ons computed by individual trees for
observa�ons unseen by the tree.

Inspect the confusion matrix to asses the model accuracy.

(confusion_matrix <- table( 
    true = test$taste, pred = predict(wines_fit_rf, newdata = test)))

##          pred 
## true      bad average good 
##   bad     482     181    9 
##   average 149     669   60 
##   good     13     143  254

(accuracy_rf <- sum(diag(confusion_matrix)) / sum(confusion_matrix))

## [1] 0.7168367



h�ps://stats.stackexchange.com/ques�ons/197827/how-to-interpret-mean-decrease-in-
accuracy-and-mean-decrease-gini-in-random-fore

## Look at variable importance: 
importance(wines_fit_rf)

##                           bad  average     good MeanDecreaseAccuracy 
## fixed.acidity        30.15194 30.17027 29.82500             51.71162 
## volatile.acidity     64.10513 51.51792 57.95579             90.28951 
## citric.acid          28.54081 32.93660 31.90320             46.52323 
## residual.sugar       29.23441 35.39843 27.38350             56.88708 
## chlorides            36.06739 26.80210 39.22203             49.98833 
## free.sulfur.dioxide  37.74602 35.26059 29.29246             57.27752 
## total.sulfur.dioxide 25.84618 23.53196 34.53854             45.42788 
## density              26.92925 28.25958 29.45976             43.55052 
## pH                   33.72925 31.09405 42.54602             56.16315 
## sulphates            29.16720 28.56807 30.09379             47.44873 
## alcohol              81.11168 36.20917 66.60965             94.30226 
##                      MeanDecreaseGini 
## fixed.acidity                133.9582 
## volatile.acidity             205.1542 
## citric.acid                  143.4607 
## residual.sugar               159.3942 
## chlorides                    158.9609 
## free.sulfur.dioxide          173.0973 
## total.sulfur.dioxide         160.1464 
## density                      186.5196 
## pH                           162.8367 
## sulphates                    138.5101 
## alcohol                      258.7888

https://stats.stackexchange.com/questions/197827/how-to-interpret-mean-decrease-in-accuracy-and-mean-decrease-gini-in-random-fore


What seems to be the conclusion? What are the characteris�cs that are predic�ve of the
wine quality score?

varImpPlot(wines_fit_rf)



ExerciseExercise
 

Go to the “Lec7_Exercises.Rmd” file, which can be downloaded from the class
website under the Lecture tab.

Complete Exercise 3.


