
Lecture 2: Communica�ng andLecture 2: Communica�ng and
Programming in RProgramming in R
CME/STATS 195CME/STATS 195
Lan Huong NguyenLan Huong Nguyen
October 2, 2018October 2, 2018

Data science workflow

Communica�ng with R Markdown

Programming

Style

Control flow statements

Func�ons

ContentsContents

Data ScienceData Science

1. Import
2. Wrangle (�dy & transform)
3. Visualize
4. Model
5. Communicate

Data Science WorkflowData Science Workflow

Data science is an exci�ng discipline that allows you to turn raw data into

understanding, insight, and knowledge. 1

tidyverse includes packages for impor�ng, wrangling,
exploring and modeling data.

The system is intended to make data scien�sts more
produc�ve. To use tidyverse do the following:

The tidyverse is an opinionated collec�on of R
packages designed for data science. All packages share
an underlying design philosophy, grammar, and data

structures. 2

Install the package
install.packages("tidyverse")
Load it into memory
library("tidyverse")

tidyversetidyverse

Tibbles are a modern take on data frames. They keep
the features that have stood the test of �me, and drop
the features that used to be convenient but are now
frustra�ng.

tibbles are data frames, tweaked to make life a li�le easier. Unlike regular
data.frames they:

never change the type of the inputs (e.g. do not convert strings to factors!)
never changes the names of variables
never creates row.names()
only recycles inputs of length 1

The The tibbletibble package package
The tibble package is part of the core tidyverse.

Using Using tibblestibbles

To use func�ons from tibble and other tidyverse packages:

load it into memory
library(tidyverse)

Prin�ng tibble is much nicer, and always fits into your window:

e.g. a built-in dataset 'diamonds' is a tibble:
class(diamonds)

[1] "tbl_df" "tbl" "data.frame"

diamonds

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
… with 53,930 more rows

class(diamonds$carat)

[1] "numeric"

class(diamonds[["carat"]])

[1] "numeric"

class(diamonds[, "carat"])

[1] "tbl_df" "tbl" "data.frame"

Using Using tibblestibbles

Crea�ng tibbles is similar to data.frames, but no strict rules on column names:

(tb <- tibble(x = 1:5, y = 1,z = x ^ 2 + y, `:)` = "smile"))

A tibble: 5 x 4
x y z `:)`
<int> <dbl> <dbl> <chr>
1 1 1 2 smile
2 2 1 5 smile
3 3 1 10 smile
4 4 1 17 smile
5 5 1 26 smile

Subse�ng tibbles is stricter than subse�ng data.frames, and ALWAYS returns
objects with expected class: a single [returns a tibble, a double[[returns a vector.

More on More on tibblestibbles

You can read more about other tibble features by calling on your R console:

vignette("tibble")

Communica�ng with R MarkdownCommunica�ng with R Markdown

R Markdown provides an unified authoring framework for
data science, combining your code, its results, and your prose
commentary.

R MarkdownR Markdown

R Markdown was designed to be used:

for communica�ng your conclusions with people who do
not want to focus on the code behind the analysis.

for collabora�ng with other data scien�sts, interested in both conclusions,
and the code.

as a modern day lab notebook for data science, where you can capture both
your work and your thought process.

R Markdown sourse filesR Markdown sourse files
R Markdown files are a plain text files with “.Rmd” extension.

 title: "Title of my first document"
 date: "2018-09-27"
 output: html_document

 # Section title

    ```{r chunk-name, include = FALSE} 
    library(tidyverse) 
    summary(cars) 
    ``` 

 ## Subsection title

    ```{r pressure, echo=FALSE} 
    plot(pressure) 
    ``` 

 Note that the `echo = FALSE` parameter was added to the code chunk to
 prevent printing of the R code that generated the plot.

The documents must contain YAML header marked with dashes. You can ass both code
chunks and plain text. Sec�ons and subsec�ons are marked with hashtags.

Compiling R Markdown filesCompiling R Markdown files
To produce a complete report containing all text, code, and results:

In RStudio, click on “Knit” or press Cmd/Ctrl + Shift + K.

From the R command line, type rmarkdown::render(“filename.Rmd”)

This will display the report in the viewer pane, and create a self-contained HTML file that
you can share with others.

A�er compiling the R Markdown document from the previous slide, you get .this html

https://cme195.github.io/assets/lectures/test_rmd.html

Viewing the report in RStudioViewing the report in RStudio

YAML headerYAML header
A YAML header is a set of key: value pairs at the start of your file. Begin and end the
header with a line of three dashes (- - -), e.g.

title: "Untitled"
author: "Anonymous"
output: html_document

You can tell R Markdown what type of document you want to render:
html_document (default), pdf_document, word_document,
beamer_presentation etc.

You can print a table of contents (toc) with the following:

title: "Untitled"
author: "Anonymous"
output:
 html_document:
 toc: true

Text in R MarkdownText in R Markdown
In “.Rmd” files, prose is wri�en in Markdown, a lightweight markup language with plain
text files forma�ng syntax.

Sec�on headers/�tles:

1st Level Header

2nd Level Header

3rd Level Header

Text forma�ng:

italic or _italic_
bold __bold__

`code`
superscript^2^ and subscript~2~

Text in R MarkdownText in R Markdown
Lists:

* unordered list
* item 2
 + sub-item 1
 + sub-item 2

1. ordered list
1. item 2. The numbers are incremented automatically in the output.

Links and images:

<http://example.com>

[linked phrase](http://example.com)

![optional caption text](path/to/img.png)

Text in R MarkdownText in R Markdown
Tables:

Table Header	Second Header
Cell 1 | Cell 2
Cell 3 | Cell 4

Math formulae

α is the first letter of the Greek alphabet.

Using $$ prints a centered equation in the new line.

$$\sqrt{\alpha^2 + \beta^2} = \frac{\gamma}{2}$$

Code chunksCode chunks
In R Markdown R code must go inside code chunks, e.g.:

  ```{r chunk-name} 
      x <- runif(10) 
      y <- 10 * x + 4 
      plot(x, y) 
  ```


Keyboard shortcuts:

Insert a new code chunk: Ctrl/Cmd + Alt + I

Run current chunk: Ctrl/Cmd + Shift + Enter

Run current line (where the cursor is): Ctrl/Cmd + Enter

Chunk Op�ons:Chunk Op�ons:
Chunk output can be customized with op�ons supplied to chunk header. Some non-
default op�ons are:

eval = FALSE : prevents code from being evaluated
include = FALSE : runs the code, but hides code and its output in the
final document
echo = FALSE : hides the code, but not the results, in the final document
message = FALSE : hides messages
warning = FALSE : hides warnings
results = ‘hide’ : hides printed output
fig.show = ‘hide’ : hides plots
error = TRUE : does not stop rendering if error occurs

Inline codeInline code
You can evealuate R code in a middle of your text:

 There are 26 in the alphabet, and 12 months in each year.
 Today, there are `as.Date("2019-08-23") - Sys.Date()` days left till my next birthday.

There are 26 in the alphabet, and 12 months in a year. Today, there are 325 days le� �ll
my next birthday.

More on R MarkdownMore on R Markdown
R Markdown is rela�vely young, and growing rapidly.

Official R Markdown website: ()h�p://rmarkdown.rstudio.com

Further reading and references:

h�ps://bookdown.org/yihui/rmarkdown/
h�p://www.stat.cmu.edu/~cshalizi/rmarkdown
h�ps://www.rstudio.com/resources/cheatsheets/

http://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/
http://www.stat.cmu.edu/~cshalizi/rmarkdown
https://www.rstudio.com/resources/cheatsheets/

Some R Markdown adviceSome R Markdown advice
See your future self as a collaborator.
Ensure each notebook has a descrip�ve �tle and name.
Use the header date to record start �me
Keep track of failed a�empts
If you discover an error in a data file, write code to fix it.
Regularly knit the notebook
Use random seeds before sampling.
Keep track the versions of the packages you use, e.g. by including
sessionInfo() command at the end of your document.

All the above will help you increase the reproduciblity of your work.

Programming: style guideProgramming: style guide

Good
fit-models.R
utility-functions.R

Bad (works but does not follow style conventio
foo.r
stuff.r

Variable and func�on names are lowercase.

Good
day_one
day_1

Bad (works but does not follow style conventio
first_day_of_the_month
DayOne

Naming conven�onsNaming conven�ons
The first step of programming is naming things.
In the “Hadley Wickam” :R style conven�on

File names are meaningful. Script files end with “.R”, and R Markdown with “.Rmd”

http://adv-r.had.co.nz/Style.html

Good
x <- 1 + 2

Bad (works but does not follow style conventio
x = 1 + 2

Assignment use ‘<-’ not ‘=’:

SpacingSpacing
Spacing around all infix operators (=, +, -, <-, etc.):

average <- mean(feet / 12 + inches, na.rm = TRUE) # Good
average<-mean(feet/12+inches,na.rm=TRUE) # Bad

Spacing before le� parentheses, except in a func�on call

Good
if (debug) do(x)
plot(x, y)

Bad
if(debug)do(x)
plot (x, y)

An opening curly brace “{” should
not go on its own line and be
followed by a new line.
A closing curly “}” brace can go on its
own line.
Indent the code inside curly braces.
It’s ok to leave very short statements
on the same line

Good
if (y < 0 && debug) {
 message("Y is negative")
}
if (y == 0) {
 log(x)
} else {
 y ^ x
}

Bad
if (y < 0 && debug)
message("Y is negative")

if (y == 0) {
 log(x)
}
else {
 y ^ x
}

if (y < 0 && debug) message("Y is negative")

Curly bracesCurly braces

Comments and documenta�onComments and documenta�on
Comment your code!

'get_answer' returns the answer to life, the universe and everything else.
get_answer <- function(){ return(42)} # This is a comment

Comments are not sub�tles, i.e. don’t repeat the code in the comments.

Bad comments:
Loop through all bananas in the bunch
for(banana in bunch) {
 # make the monkey eat one banana
 MonkeyEat(b)
}

Use dashes to separate blocks of code:

Generate Data ---------------------------
x <- rnorm(100)
y <- 12 * x + 5

Plot Data -------------------------------
plot(x, y)

Programming: control flowProgramming: control flow

Booleans are logical data types
(TRUE/FALSE) associated with condi�onal
statements, which allow different ac�ons
and change control flow.

equal "==""
5 == 5

[1] TRUE

not equal: "!=""
5 != 5

[1] FALSE

greater than: ">""
5 > 4

[1] TRUE

greater than or equal: ">="" (# similarly < an
5 >= 5

[1] TRUE

You can combine multiple boolean expressions
TRUE & TRUE

[1] TRUE

TRUE & FALSE

[1] FALSE

TRUE | FALSE

[1] TRUE

!(TRUE)

[1] FALSE

Booleans/logicalsBooleans/logicals

Booleans/logicalsBooleans/logicals
In R if you combine 2 vectors of booleans, by each element then use &. Rember the
recycling property for vectors.

c(TRUE, TRUE) & c(FALSE, TRUE)

[1] FALSE TRUE

c(5 < 4, 7 == 0, 1< 2) | c(5==5, 6> 2, !FALSE)

[1] TRUE TRUE TRUE

c(TRUE, TRUE) & c(TRUE, FALSE, TRUE, FALSE) # recycling

[1] TRUE FALSE TRUE FALSE

Booleans/logicalsBooleans/logicals
If we use double operators && or || is used only the first elements are compared:

c(TRUE, TRUE) && c(FALSE, TRUE)

[1] FALSE

c(5 < 4, 7 == 0, 1< 2) || c(5==5, 6> 2, !FALSE)

[1] TRUE

c(TRUE, TRUE) && c(TRUE, FALSE, TRUE, FALSE)

[1] TRUE

Booleans/logicalsBooleans/logicals
Another possibility to combine booleans is to use all() or any()
func�ons:
all(c(TRUE, FALSE, TRUE))

[1] FALSE

any(c(TRUE, FALSE, TRUE))

[1] TRUE

all(c(5 > -1, 3 >= 1, 1 < 1))

[1] FALSE

any(c(5 > -1, 3 >= 1, 1 < 1))

[1] TRUE

Control statementsControl statements
Control flow is the order in which individual statements, instruc�ons or
func�on calls of a program are evaluated.

Control statements allow you to do more complicated tasks.

Their execu�on results in a choice between which of two or more paths
should be followed.

If / else
For

While

Decide on whether a block of code
should be executed based on the
associated boolean expression.

Syntax. The if statements are
followed by a boolean expression
wrapped in parenthesis. The
condi�onal block of code is inside
curly braces {}.

if (traffic_light == "green") {
 print("Go.")
}

‘if-else’ statements let you introduce
more op�ons

You can also use else if()

if (traffic_light == "green") {
 print("Go.")
} else {
 print("Stay.")
}

if (traffic_light == "green") {
 print("Go.")
} else if (traffic_light == "yellow") {
 print("Get ready.")
} else {
 print("Stay.")
}

If statementsIf statements

operator(2, 7, '+')

[1] 9

operator(2, 7, '-')

[1] -5

operator(2, 7, '/')

[1] 0.2857143

operator(2, 7, "a")

Error in operator(2, 7, "a"): Unknown op!

Switch statementsSwitch statements
For very long sequence of if statements, use the switch() func�on

operator <- function(x, y, op) {
 switch(as.character(op),
 '+' = x + y,
 '-' = x - y,
 '*' = x * y,
 '/' = x / y,
 stop("Unknown op!")
)
}

For loopsFor loops

A for loop is a statement which repeats the execu�on a block of code a given
number of itera�ons.
for (i in 1:5){
 print(i^2)
}

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

While loopsWhile loops

Similar to for loops, but repeat the execu�on as long as the boolean
condi�on supplied is TRUE.
i = 1
while(i <= 5) {
 cat("i =", i, "\n")
 i = i + 1
}

i = 1
i = 2
i = 3
i = 4
i = 5

next halts the processing of the
current itera�on and advances the
looping index.

for (i in 1:10) {
 if (i <= 5) {
 print("skip")
 next
 }
 cat(i, "is greater than 5.\n")
}

[1] "skip"
[1] "skip"
[1] "skip"
[1] "skip"
[1] "skip"
6 is greater than 5.
7 is greater than 5.
8 is greater than 5.
9 is greater than 5.
10 is greater than 5.

next applies only to the innermost
of nested loops.

for (i in 1:3) {
 cat("Outer-loop i: ", i, ".\n")
 for (j in 1:4) {
 if(j > i) {
 print("skip")
 next
 }
 cat("Inner-loop j:", j, ".\n")
 }
}

Outer-loop i: 1 .
Inner-loop j: 1 .
[1] "skip"
[1] "skip"
[1] "skip"
Outer-loop i: 2 .
Inner-loop j: 1 .
Inner-loop j: 2 .
[1] "skip"
[1] "skip"
Outer-loop i: 3 .
Inner-loop j: 1 .
Inner-loop j: 2 .
Inner-loop j: 3 .
[1] "skip"

NextNext

BreakBreak
The break statement allows us to break out out of a for, while loop (of the
smallest enclosing).
The control is transferred to the first statement outside the inner-most loop.
for (i in 1:10) {
 if (i == 6) {
 print(paste("Coming out from for loop Where i = ", i))
 break
 }
 print(paste("i is now: ", i))
}

[1] "i is now: 1"
[1] "i is now: 2"
[1] "i is now: 3"
[1] "i is now: 4"
[1] "i is now: 5"
[1] "Coming out from for loop Where i = 6"

Exercise 1Exercise 1

Go to “Lec2_Exercises.Rmd” in RStudio.

Do Exercise 1.

Programming: func�onsProgramming: func�ons

What is a func�on in R?What is a func�on in R?
A func�on is a procedure/rou�ne that performs a specific task.

Func�ons are used to abstract components of larger program.

Similarly to mathema�cal func�ons, they take some input and then do
something to find the result.

Func�ons allow you to automate common tasks in a more powerful and
general way than copy-and-pas�ng.

If you’ve copied and pasted a block of code more than twice, you should use
a func�on instead.

Why should you use func�ons?Why should you use func�ons?
Func�ons become very useful as soon as your code becomes long enough.

Func�ons will make your code easier to understand.
Errors are less likely to occure and easier to fix.
For repeated taskes, changes can be made once by edi�ng a func�on and not
many distant chunks of code. Example:
set.seed(1)
a <- rnorm(10); b <- rnorm(10); c <- rnorm(10); d <- rnorm(10)
Bad
a <- (a - min(a, na.rm = TRUE)) /
 (max(a, na.rm = TRUE) - min(a, na.rm = TRUE))
b <- (b - min(b, na.rm = TRUE)) /
 (max(b, na.rm = TRUE) - min(b, na.rm = TRUE))
c <- (c - min(c, na.rm = TRUE)) /
 (max(b, na.rm = TRUE) - min(c, na.rm = TRUE))
d <- (d - min(d, na.rm = TRUE)) /
 (max(d, na.rm = TRUE) - min(d, na.rm = TRUE))

Good
rescale_data <- function(x) {
 rng <- range(x, na.rm = TRUE)
 return((x - rng[1]) / (rng[2] - rng[1]))
}
a <- rescale_data(a)
b <- rescale_data(b)
c <- rescale_data(c)
d <- rescale_data(d)

Func�on Defini�onFunc�on Defini�on
To define a func�on you assign a variable name to a function object.

Func�ons take arguments, mandatory and op�onal.

Provide the brief descrip�on of your func�on in comments before the
func�on defini�on.

Computes mean and standard deviation of a vector,
and optionally prints the results.
summarize_data <- function(x, print=FALSE) {
 center <- mean(x)
 spread <- sd(x)
 if (print) {
 cat("Mean =", center, "\n",
 "SD =", spread, "\n")
 }
 list(mean=center, sd=spread)
}

Calling func�onsCalling func�ons
without printing
x <- rnorm(n = 500, mean = 4, sd = 1)
y <- summarize_data(x)

with printing
y <- summarize_data(x, print = TRUE)

Mean = 4.009679
SD = 1.01561

Results are stored in list "y"
y$mean

[1] 4.009679

y$sd

[1] 1.01561

The order of arguments does not matter if the names are specified
y <- summarize_data(print=FALSE, x = x)

show_missings(mtcars)

Missing values: 0

dim(show_missings(mtcars))

Missing values: 0

[1] 32 11

Explicit return statementsExplicit return statements
The value returned by the func�on is usually the last statement it evaluates. You can
choose to return early by using return(); this makes you code easier to read.

Complicated function simplified by the use of early return statements
complicated_function <- function(x, y, z) {
 # Check some condition
 if (length(x) == 0 || length(y) == 0) {
 return(0)
 }
 # Complicated code here
}

Returning invisible objects can be done with invisible()

show_missings <- function(df) {
 cat("Missing values:", sum(is.na(df)), "\n")
 invisible(df) # this result doesn’t get printed out
}

EnvironmentEnvironment
The environment of a func�on controls how R finds an object associated with a name.

f <- function(x) {
 x + y
}

R uses rules called lexical scoping to find the value associated with a name. Here, R will
look for y in the environment where the func�on was defined

y <- 100
f(10)

[1] 110

This behaviour a�racts bugs. You should try to avoid using global variables.

apply, lapply, sapply func�onsapply, lapply, sapply func�ons
The apply family func�ons, are func�ons which manipulate slices of data
stored as matrices, arrays, lists and data-frames in a repe��ve way.

These func�ons avoid the explicit use of loops, and might be more
computa�onally efficient, depending on how big a dataset is. For more
details on run�mes see this .

apply allow you to perform opera�ons with very few lines of code.

The family comprises: apply, lapply , sapply, vapply, mapply, rapply, and
tapply. The difference lies in the structure of input data and the desired
format of the output).

link

https://www.r-bloggers.com/gnu-r-loop-speed-comparison/

apply func�onapply func�on
apply operates on arrays/matrices.

In the example below we obtain column sums of matrix X.

(X <- matrix(sample(30), nrow = 5, ncol = 6))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 11 21 10 16 7 15
[2,] 30 13 14 27 23 2
[3,] 18 3 5 8 4 28
[4,] 1 20 6 24 26 25
[5,] 19 9 12 29 22 17

apply(X, MARGIN = 2 , FUN = sum)

[1] 79 66 47 104 82 87

Note: that in a matrix MARGIN = 1 indicates rows and MARGIN = 2 indicates
columns.

apply func�onapply func�on
apply can be used with user-defined func�ons:
number entries < 15
apply(X, 2, function(x) 10*x + 2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 112 212 102 162 72 152
[2,] 302 132 142 272 232 22
[3,] 182 32 52 82 42 282
[4,] 12 202 62 242 262 252
[5,] 192 92 122 292 222 172

a func�on can be defined outside apply(),
logColMeans <- function(x, eps = NULL) {
 if (!is.null(eps)) x <- x + eps
 return(mean(x))
}
apply(X, 2, logColMeans)

[1] 15.8 13.2 9.4 20.8 16.4 17.4

apply(X, 2, logColMeans, eps = 0.1)

[1] 15.9 13.3 9.5 20.9 16.5 17.5

lapply/sapply func�onslapply/sapply func�ons
lapply() is used to repeatedly apply a func�on to elements of a
sequen�al object such as a vector, list, or data-frame (applies to columns).

The output is a list with the same number of elements as the input object.

lapply returns a list
lapply(1:3, function(x) x^2)

[[1]]
[1] 1

[[2]]
[1] 4

[[3]]
[1] 9

sapply is the same as lapply but returns a “simplified” output.
sapply(1:3, function(x) x^2)

[1] 1 4 9

like with apply(), user-defined func�ons can be used with
sapply/lapply.

Func�onal ProgrammingFunc�onal Programming

The idea of passing a func�on to another func�on is extremely powerful idea,
and it’s one of the behaviours that makes R a func�onal programming (FP)
language.

The apply family of func�ons in base R are basically tools to extract out this duplicated
code, so each common for loop pa�ern gets its own func�on.

The package purrr in tidyverse framework solves similar problems, more in line
with the ‘�dyverse-philosophy’. We will learn in in following lectures.

Exercise 2 and 3Exercise 2 and 3

Go back to “Lec2_Exercises.Rmd” in RStudio.

Do Exercise 2 and 3.

1.

2.

R for Data Science↩

Tidyverse website↩

http://r4ds.had.co.nz/introduction.html
https://www.tidyverse.org/

