
Lecture 1: Introduc�on to RLecture 1: Introduc�on to R
CME/STATS 195CME/STATS 195
Lan Huong NguyenLan Huong Nguyen
September 27, 2018September 27, 2018

ContentsContents

Course Objec�ves & Organiza�on

The R language

Se�ng up R environment

Basics of coding in R

Course Objec�ves & Organiza�onCourse Objec�ves & Organiza�on

Course Logis�csCourse Logis�cs

CME/STATS 195 will run for 4 weeks: 09/27-10/23/2018

Lectures: Tue, Thu 12:00 PM - 1:20 PM, Building 200 room 034
Office hours: Mon 4PM, Huang (Basement) Student Area
Class website:
Homework submission:
Ques�ons/Communica�on:

h�ps://cme195.github.io/
h�ps://canvas.stanford.edu/

h�ps://canvas.stanford.edu/

Grading (Sa�sfactory/No Credit):

Homework assignments (40%)
(Group) final project (40%)
Par�cipa�on (20%)

https://cme195.github.io/
https://canvas.stanford.edu/
https://canvas.stanford.edu/

AssignmentsAssignments
Homework:

work individually
due the 3rd week of class

Final project:

work in groups up to 4 students
�tle and abstract due the 3rd week of class
final report and R code due one week a�er the last class
details can be found on class website

Late day policy:

no later than 5 days post due date; 10% penalty per day

https://cme195.github.io/assignments

Pre-requisites and expecta�onsPre-requisites and expecta�ons
No formal pre-requisites, but you should have some prior knowledge of sta�s�cs and
some programming experience.

The goal of this course is for you to:

familiarize yourself with R
learn how to do interes�ng and prac�cal things quickly in R
start using R as a powerful tool for data science

We will NOT learn:

computer programming
sta�s�cs
big data

This is a short course, so you will not learn everything about R.

Topics CoveredTopics Covered
R Basics: data types and structures, variable assignment etc.

R as a programming language: syntax, flow control, itera�on, func�ons.

Impor�ng and �dying data.

Processing and transforming data with dplyr.

Visualizing data with ggplot2.

Exploratory data analysis (EDA)

Elements of sta�cs: modeling, predic�ng and tes�ng.

Some R tools for supervised & unsupervised learning.

Genera�ng R Markdown reports for efficient communica�on.

The R languageThe R language

What is R?What is R?
R was created by Rob Gentleman and Ross Ihaka in 1994; it is based on the S
language developed at Bell Labs by John Chambers (Stanford Sta�s�cs).

It is an open-source language and environment for sta�s�cal compu�ng and
graphics.

R offers:
A simple and effec�ve programming language.
A data handling and storage facility.
A suite of libraries for matrix computa�ons.
A large collec�on of tools for data analysis.
Facili�es for genera�ng high-quality graphics and data display.

R is highly extensible, but remains a fully planned and coherent system,
rather than an incremental accumula�on of specific and inflexible tools.

Who uses R?Who uses R?
Tradi�onally, academics and researchers. However, recently R has expanded also to
industry and enterprise market. Worldwide usage on log-scale:

Source: h�p://pypl.github.io/PYPL.html

The PYPL Index is created by analyzing how o�en language tutorials are searched on
Google (generated using raw data from Google Trends).

http://pypl.github.io/PYPL.html

Why should you learn R?Why should you learn R?
Pros:

Open source and cross-pla�orm.
Created with sta�s�cs and data in mind; new ideas and methods in sta�s�cs
usually appear in R first.
Provides a wide range of high-quality packages for data analysis and
visualiza�on.
Arguably, the most commonly used language by data scien�sts

Cons:

Performance/Scalability: low speed, poor memory management.
Some packages are low-quality and provide no support.
A unconven�onal syntax and a few unusual features compared to other
languages.

A few alterna�ves to R:A few alterna�ves to R:
Python: fastest growing, general-purpose programming, with data science
libraries.
SAS: used for sta�s�cal analysis; commercial and expensive, slower
development.
SQL: designed for managing data held in a rela�onal database management
system.
MATLAB: proprietary, mostly for numerical compu�ng, and matrix
computa�ons.

What makes R good?What makes R good?
R is an interpreted language, i.e. programs do not need to be compiled into
machine-language instruc�ons.
R is object oriented, i.e. it can be extended to include non-standard data
structures (objects). A generic func�on can act differently depending on what
objects you passe to it.
R supports matrix arithme�cs.
R packages can generate publica�on-quality plots, and interac�ve graphics.
Many user-created R packages contain implementa�ons of cu�ng edge
sta�s�cs methods.

What makes R good?What makes R good?
As of September 29, there are 13,083 packages on , 1,560 on , and
many others on)

CRAN Bioconductor
github

Source: h�p://blog.revolu�onanaly�cs.com/

https://cran.r-project.org/web/packages/index.html
https://www.bioconductor.org/
https://github.com/trending/r?since=weekly
http://blog.revolutionanalytics.com/2017/01/cran-10000.html

“Textbook”“Textbook”
We will use R for Data Science as a primary reference.

Freely available at: h�p://r4ds.had.co.nz/

http://r4ds.had.co.nz/

Other useful resources for learning ROther useful resources for learning R
R in a nutshell and introductory book by Joseph Adler - R tutorial
()

Advanced R book by Hadley Wickham for intermediate programmers
()

swirl R-package for interac�ve learning for beginners
()

Data Camp courses for data science, R, python and more
()

h�ps://www.tutorialspoint.com/r/r_packages.htm

h�p://adv-r.had.co.nz/Introduc�on.html

h�p://swirlstats.com/

h�ps://www.datacamp.com/courses

https://www.tutorialspoint.com/r/r_packages.htm
http://adv-r.had.co.nz/Introduction.html
http://swirlstats.com/
https://www.datacamp.com/courses

Se�ng up an R environmentSe�ng up an R environment

Installing RInstalling R

R is open sources and cross pla�orm (Linux, Mac, Windows).

To download it, go to the Comprehensive R Archive Network website. Download
the latest version for your OS and follow the instruc�ons.

CRAN

Each year a new version of R is available, and 2-3 minor releases. You should update
your so�ware regularly.

https://cran.cnr.berkeley.edu/

Interpreter mode:

open a terminal and launch R by calling “R” (or
open an R console).
type R commands interac�vely in the command
line, pressing Enter to execute.
use q() to quit R.

Scrip�ng mode:

write a text file containing all commands you
want to run
save your script as an R script file (e.g.
“myscript.R”)
execute your code from the terminal by calling
“Rscript myscript.R”

Running R codeRunning R code

R editorsR editors
The most popular R editors are:

, an integrated development environment (IDE) for R.
, a free, powerful, customizable editor for many languages.

Rstudio
Emacs

In this class, we will use RStudio, as it is more user-friendly.

https://www.rstudio.com/products/RStudio/
https://www.gnu.org/software/emacs/

Installing RStudioInstalling RStudio
RStudio is open-source and cross-pla�orm (Linux, Mac, Windows).
Download and install the latest version for your OS from .the official website

https://www.rstudio.com/products/rstudio/download/#download

RStudio windowRStudio window

RStudio preferencesRStudio preferences

RStudio layoutRStudio layout

RStudio apprearanceRStudio apprearance

More on RStudio cuztomiza�on can be found here

https://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio

R document typesR document types

R document typesR document types
 a text file containing R commands stored together.

 files can generate high quality reports conta�ning notes, code
and code outputs. Python and bash code can also be executed.

 is an R Markdown document with chunks that can be executed
independently and interac�vely, with output visible immediately beneath
the input.

 let’s you author slides that make use of R code and LaTeX
equa�ons as straigh�orward as possible.

 enables the embedding of R code within LaTeX documents.

 documents

R Script

R Markdown

R Notebook

R presenta�on

R Sweave

Other

https://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_scrpt.html
http://rmarkdown.rstudio.com/lesson-1.html
http://rmarkdown.rstudio.com/r_notebooks.html
https://support.rstudio.com/hc/en-us/articles/200486468-Authoring-R-Presentations
https://support.rstudio.com/hc/en-us/articles/200552056-Using-Sweave-and-knitr
http://rmarkdown.rstudio.com/formats.html

R packagesR packages
R packages are a collec�on of R func�ons, complied code and sample data.

They are stored under a directory called library in the R environment.

Some packages are installed by default during R installa�on and are always
automa�cally loaded at the beginning of an R session.

Addi�onal packages by the user from:
 The first and biggest R repository.

: Bioinforma�cs packages for the analysis of biological
data.

: packages under development

CRAN
Bioconductor

github

https://cran.r-project.org/web/packages/available_packages_by_name.html
http://bioconductor.org/
https://github.com/

Installing R packages from different repositories:Installing R packages from different repositories:
From CRAN:
install.packages("Package Name"), e.g.
install.packages("glmnet")

From Bioconductor:
First, load Bioconductor script. You need to have an R version >=3.3.0.
source("https://bioconductor.org/biocLite.R")

Then you can install packages with: biocLite("Package Name"), e.g.
biocLite("limma")

From github:
You need to first install a package "devtools" from CRAN
install.packages("devtools")

Load the "devtools" package
library(devtools)

Then you can install a package from some user's reporsitory, e.g.
install_github("twitter/AnomalyDetection")

or using install_git("url"), e.g.
install_git("https://github.com/twitter/AnomalyDetection")

Where are R packages stored?Where are R packages stored?
Get library locations containing R packages
.libPaths()

[1] "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "/usr/local/lib/R/site-library"

Get the info on all the packages installed
installed.packages()[1:5, 1:3]

Package LibPath Version
abind "abind" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.4-5"
acepack "acepack" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.4.1"
adaptiveGPCA "adaptiveGPCA" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "0.1.1"
ade4 "ade4" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.7-11"
ADGofTest "ADGofTest" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "0.3"

Get all packages currently loaded in the R environment
search()

[1] ".GlobalEnv" "package:stats" "package:graphics" "package:grDevices" "package:

Basics of coding in RBasics of coding in R

R as a calculatorR as a calculator
R can be used as a calculator, e.g.
23 + sin(pi/2)

[1] 24

abs(-10) + (17-3)^4

[1] 38426

4 * exp(10) + sqrt(2)

[1] 88107.28

Intui�ve arithme�c operators: addi�on (+), subtrac�on (-), mul�plica�on (*),
division: (/), exponen�a�on: (^), modulus: (%%)

Built-in constants:
pi, LETTERS, letters, month.abb, month.name

VariablesVariables
Variables are objects used to store various informa�on.
Variables are nothing but reserved memory loca�ons for storing values.
In contrast to other programming languages like C or java, in R the variables
are NOT declared as some data type/class (e.g. vectors, lists, data-frames).
When variables are assigned with R-Objects, the data type of the R-object
becomes the data type of the variable.

Variable assignmentVariable assignment
Variable assignment can be done using the following operators: =, <-, ->:

Assignment using equal operator.
var.1 = 34759

Assignment using leftward operator.
var.2 <-"learn R"

#Assignment using rightward operator.
TRUE -> var.3

The values of the variables can be printed with print() func�on, or cat().

print(var.1)

[1] 34759

cat("var.2 is ", var.2)

var.2 is learn R

cat("var.3 is ", var.3 ,"\n")

var.3 is TRUE

le�ers
numbers
the character _
the character .

a <- 0
first.variable <- 1
SecondVariable <- 2
variable_2 <- 1 + first.variable
very_long_name.3 <- 4

Some words are reserved in R and cannot be used as object names:

Inf and -Inf which respec�vely stand for posi�ve and nega�ve infinity, R
will return this when the value is too big, e.g. 2^1024
NULL denotes a null object. O�en used as undeclared func�on argument.
NA represents a missing value (“Not Available”).
NaN means “Not a Number”. R will return this when a computa�on is
undefined, e.g. 0/0.

Naming variablesNaming variables
Variable names must start with a le�er, and can only contain:

Data typesData types
Values in R are limited to only 6 atomic classes:

Logical: TRUE/FALSE or T/F
Numeric: 12.4, 30, 2, 1009, 3.141593
Integer: 2L, 34L, -21L, 0L
Complex: 3 + 2i, -10 - 4i
Character: 'a', '23.5', "good", "Hello world!", "TRUE"
Raw (holding raw bytes): as.raw(2), charToRaw("Hello")

Objects can have different structures based on atomic class and dimensions:

Dimensions Homogeneous Heterogeneous

1d vector list

2d matrix data.frame

nd array

R also supports more complicated objects built upon these.

Variable classVariable class
R is a dynamically typed language, which means that we can change a variable’s data
type of the same variable again and again when using it in a program.

x <- "Hello"
cat("The class of x is", class(x),"\n")

The class of x is character

x <- 34.5
cat(" Now the class of x is ", class(x),"\n")

Now the class of x is numeric

x <- 27L
cat(" Next the class of x becomes ", class(x),"\n")

Next the class of x becomes integer

You can see what variables are currently available in the workspace by calling

print(ls())

[1] "a" "first.variable" "SecondVariable" "var.1" "var.2"

Create a vector with "combine"
x1 <- c(1, 3, 7:12)
x2 <- c('apple', 'banana', 'watermelon')
Look at content of a variable:
x1

[1] 1 3 7 8 9 10 11 12

print(x2)

[1] "apple" "banana" "watermelon"

Including in () also prints content
(x3 <- 1:5)

[1] 1 2 3 4 5

If mixed, on-character values are coerced
to character type
(s <- c('apple', 123.56, 5, TRUE))

[1] "apple" "123.56" "5" "TRUE"

Generate numerical sequence, e.g. sequence
from 5 to 7 with 0.4 increment.
(v <- seq(5, 7, by = 0.4))

[1] 5.0 5.4 5.8 6.2 6.6 7.0

VectorsVectors
Vectors are the simplest R data objects; there are no scalars in R.

Elements of a vector can be accessed
using indexing, with square brackets,
[].

Unlike in many languages, in R
indexing starts with 1.

Using nega�ve integer value indices
drops corresponding element of the
vector.

Logical indexing (TRUE/FALSE) is
allowed.

days <- c("Sun","Mon","Tue","Wed","Thurs","Fri",
(today <- days[5])

[1] "Thurs"

Accessing vector elements using position.
(weekend.days <- days[c(1, 7)])

[1] "Sun" "Sat"

Accessing vector elements using negative index
(week.days <- days[c(-1,-7)])

[1] "Mon" "Tue" "Wed" "Thurs" "Fri"

Accessing vector elements using logical indexi
(birthday <- days[c(F, F, F, F, T, F, F)])

[1] "Thurs"

Vector indexingVector indexing

Comparisons (==,!=,>,>=,<,<=)
1 == 2

[1] FALSE

Check whether number is even
(%% is the modulus)
(5 %% 2) == 0

[1] FALSE

Logical indexing
x <- seq(1,10)
x[(x%%2) == 0]

[1] 2 4 6 8 10

Element-wise comparison
c(1,2,3) > c(3,2,1)

[1] FALSE FALSE TRUE

Check whether numbers are even,
one by one
(seq(1,4) %% 2) == 0

[1] FALSE TRUE FALSE TRUE

Logical indexing
x <- seq(1,10)
x[x>=5]

[1] 5 6 7 8 9 10

Logical opera�onsLogical opera�ons

Create two vectors.
v1 <- c(1,4,7,3,8,15)
v2 <- c(12,9,4,11,0,8)

Vector addition.
(vec.sum <- v1+v2)

[1] 13 13 11 14 8 23

Vector subtraction.
(vec.difference <- v1-v2)

[1] -11 -5 3 -8 8 7

Vector multiplication.
(vec.product <- v1*v2)

[1] 12 36 28 33 0 120

Vector division.
(vec.ratio <- v1/v2)

[1] 0.08333333 0.44444444 1.75000000 0.272727

Vector concatenation
vec.concat <- c(v1, v2)
Size of vector
length(vec.concat)

[1] 12

Vector arithme�csVector arithme�cs
Two vectors of same length can be added, subtracted, mul�plied or divided. Vectors can
be concatenated with combine func�on c().

RecyclingRecycling
Recycling is an automa�c lengthening of vectors in certain se�ngs.
Element-wise multiplication
v1 <- c(1,2,3,4,5,6,7,8,9,10)
v1 * 2

[1] 2 4 6 8 10 12 14 16 18 20

When two vectors of different lengths, R will repeat the shorter vector un�l
the length of the longer vector is reached.
Element-wise multiplication
v1 * c(1,2)

[1] 1 4 3 8 5 12 7 16 9 20

v1 + c(3, 7, 10)

[1] 4 9 13 7 12 16 10 15 19 13

Note: a warning is not an error. It only informs you that your code con�nued to run, but
perhaps it did not work as you intended.

Elements are arranged sequentially by column.
(N <- matrix(seq(1,20), nrow = 4, byrow = FALSE)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

Elements are arranged sequentially by row.
(M <- matrix(seq(1,20), nrow = 5, byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20

MatricesMatrices
Matrices in R are objects with homogeneous elements (of the same type), arranged in a
2D rectangular layout. A matrix can be created with a func�on:

matrix(data, nrow, ncol, byrow, dimnames)

where:

data is the input vector with elements of the matrix.
nrow is the number of rows to be crated
byrow is a logical value. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is
filled by rows.
dimnames is NULL or a list of length 2 giving the row and column names respec�vely

Define the column and row names.
rownames <- c("row1", "row2", "row3")
colnames <- c("col1", "col2", "col3", "col4", "c
(P <- matrix(c(5:19), nrow = 3, byrow = TRUE,
 dimnames = list(rownames, colnames)

col1 col2 col3 col4 col5
row1 5 6 7 8 9
row2 10 11 12 13 14
row3 15 16 17 18 19

P[2, 5] # the element in 2nd row and 5th column.

[1] 14

P[2,] # the 2nd row.

col1 col2 col3 col4 col5
10 11 12 13 14

P[, 3] # the 3rd column.

row1 row2 row3
7 12 17

P[c(3,2),] # the 3rd and 2nd row.

col1 col2 col3 col4 col5
row3 15 16 17 18 19
row2 10 11 12 13 14

P[, c(3, 1)] # the 3rd and 1st column.

col3 col1
row1 7 5
row2 12 10
row3 17 15

P[1:2, 3:5] # Subset 1:2 row 3:5 column

col3 col4 col5
row1 7 8 9
row2 12 13 14

Accessing Elements of a MatrixAccessing Elements of a Matrix

Create two 2x3 matrices.
(A <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2))

[,1] [,2] [,3]
[1,] 3 -1 2
[2,] 9 4 6

(B <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2))

[,1] [,2] [,3]
[1,] 5 0 3
[2,] 2 9 4

A + B # Element-wise sum; (A - B) difference

[,1] [,2] [,3]
[1,] 8 -1 5
[2,] 11 13 10

A * B # Element-wise multiplication

[,1] [,2] [,3]
[1,] 15 0 6
[2,] 18 36 24

A / B # Element-wise division

[,1] [,2] [,3]
[1,] 0.6 -Inf 0.6666667
[2,] 4.5 0.4444444 1.5000000

t(A) # Matrix transpose

[,1] [,2]
[1,] 3 9
[2,] -1 4
[3,] 2 6

Matrix Computa�onsMatrix Computa�ons
Matrix addi�on and subtrac�on needs matrices of same dimensions:

Matrix AlgebraMatrix Algebra
True matrix mul�plica�on A x B, with and :A ∈ ℝ

m×n B ∈ ℝ
m×n

(AB =)ij ∑
k=1

p

AikBkj

A is (2 x 3) and t(B) is (3 x 2)
A %*% t(B) # (2 x 2)-matrix

[,1] [,2]
[1,] 21 5
[2,] 63 78

t(A) is (3 x 2) and B is (2 x 3)
t(A) %*% B # (3 x 3)-matrix

[,1] [,2] [,3]
[1,] 33 81 45
[2,] 3 36 13
[3,] 22 54 30

More on matrix algebra here

http://www.statmethods.net/advstats/matrix.html

ArraysArrays
In R, arrays are data objects with more than two dimensions, e.g. a (4x3x2)-
array has 2 tables of size 4 rows by 3 columns.
Arrays can store only one data type and are created using array().
Accessing and subse�ng elements of an arrays is similar to accessing
elements of a matrix.
row.names <- c("ROW1","ROW2","ROW3", "ROW4")
column.names <- c("COL1","COL2","COL3")
matrix.names <- c("Matrix1","Matrix2")

(arr <- array(
 seq(1, 24), dim = c(4,3,2),
 dimnames = list(row.names, column.names,
matrix.names)))

, , Matrix1

COL1 COL2 COL3
ROW1 1 5 9
ROW2 2 6 10
ROW3 3 7 11
ROW4 4 8 12

, , Matrix2

COL1 COL2 COL3
ROW1 13 17 21
ROW2 14 18 22
ROW3 15 19 23
ROW4 16 20 24

Unnamed list
v <- c("Jan","Feb","Mar")
M <- matrix(c(1,2,3,4),nrow=2)
lst <- list("green", 12.3)
(u.list <- list(v, M, lst))

[[1]]
[1] "Jan" "Feb" "Mar"

[[2]]
[,1] [,2]
[1,] 1 3
[2,] 2 4

[[3]]
[[3]][[1]]
[1] "green"

[[3]][[2]]
[1] 12.3

Access 2nd element
u.list[[2]]

[,1] [,2]
[1,] 1 3
[2,] 2 4

Named list
(n.list <- list(
 first = "Jane", last = "Doe",
 gender = "Female", yearOfBirth = 1990))

$first
[1] "Jane"

$last
[1] "Doe"

$gender
[1] "Female"

$yearOfBirth
[1] 1990

Access 3rd element
n.list[[3]]

[1] "Female"

Access "yearOfBirth" element
n.list$yearOfBirth

[1] 1990

ListsLists
Lists can contain elements of different types e.g. numbers, strings, vectors and/or
another list. List is created using list() func�on.

Data-framesData-frames
A data frame is a table or a 2D array-like structure, whose:

Columns can store data of different types e.g. numeric, character etc.
Each column must contain the same number of data items.
The column names should be non-empty.
The row names should be unique.
Create the data frame.
employees <- data.frame(
 row.names = c("E1", "E2", "E3","E4", "E5"),
 name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")),
 stringsAsFactors = FALSE)
Print the data frame.
employees

name salary start_date
E1 Rick 623.30 2012-01-01
E2 Dan 515.20 2013-09-23
E3 Michelle 611.00 2014-11-15
E4 Ryan 729.00 2014-05-11
E5 Gary 843.25 2015-03-27

Useful func�ons for data-framesUseful func�ons for data-frames
Get the structure of the data frame.
str(employees)

'data.frame': 5 obs. of 3 variables:
$ name : chr "Rick" "Dan" "Michelle" "Ryan" ...
$ salary : num 623 515 611 729 843
$ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-11" ...

Print first few rows of the data frame.
head(employees, 2)

name salary start_date
E1 Rick 623.3 2012-01-01
E2 Dan 515.2 2013-09-23

Print statistical summary of the data frame.
summary(employees)

name salary start_date
Length:5 Min. :515.2 Min. :2012-01-01
Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
Mode :character Median :623.3 Median :2014-05-11
Mean :664.4 Mean :2014-01-14
3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :843.2 Max. :2015-03-27

We can extract specific columns:
using column names.
employees$name
employees[, c("name", "salary")]

or using integer indexing
employees[, 1]
employees[, c(1, 2)]

[1] "Rick" "Dan" "Michelle" "Ryan"

name salary
E1 Rick 623.30
E2 Dan 515.20
E3 Michelle 611.00
E4 Ryan 729.00
E5 Gary 843.25

We can extract specific rows:
using row names.
employees["E1",]
employees[c("E2", "E3"),]

using integer indexing
employees[1,]
employees[c(2, 3),]

name salary start_date
E1 Rick 623.3 2012-01-01

name salary start_date
E2 Dan 515.2 2013-09-23
E3 Michelle 611.0 2014-11-15

Subse�ng data-framesSubse�ng data-frames

Add a new column using assignment
operator:

Add the "dept" coulmn.
employees$dept <-
 c("IT","Operations","IT","HR","Finance")
employees

name salary start_date dept
E1 Rick 623.30 2012-01-01 IT
E2 Dan 515.20 2013-09-23 Operations
E3 Michelle 611.00 2014-11-15 IT
E4 Ryan 729.00 2014-05-11 HR
E5 Gary 843.25 2015-03-27 Finance

Adding a new row using rbind()
func�on:

Create the second data frame
new.employees <- data.frame(
 row.names = paste0("E", 6:8),
 name = c("Rasmi","Pranab","Tusar"),
 salary = c(578.0,722.5,632.8),
 start_date = as.Date(c("2013-05-21","2013-07-3
 dept = c("IT","Operations","Fianance"),
 stringsAsFactors = FALSE)

Concatenate two data frames.
(all.employees <- rbind(employees, new.employees

name salary start_date dept
E1 Rick 623.30 2012-01-01 IT
E2 Dan 515.20 2013-09-23 Operations
E3 Michelle 611.00 2014-11-15 IT
E4 Ryan 729.00 2014-05-11 HR
E5 Gary 843.25 2015-03-27 Finance
E6 Rasmi 578.00 2013-05-21 IT
E7 Pranab 722.50 2013-07-30 Operations
E8 Tusar 632.80 2014-06-17 Fianance

Adding data to data-framesAdding data to data-frames

FactorsFactors
Factors are used to categorize the data and store it as levels. They are useful for
variables which take on a limited number of unique values.

days <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
is.factor(month.name)

[1] FALSE

class(days) # Indeed these are strings of characters

[1] "character"

If not specified, R will order character type by alphabe�cal order.

(days <- factor(days)) # Convert to factors

[1] Mon Tue Wed Thu Fri Sat Sun
Levels: Fri Mon Sat Sun Thu Tue Wed

is.factor(days)

[1] TRUE

Factors orderingFactors ordering
days.sample <- sample(days, 5)
days.sample

[1] Sun Sat Wed Mon Tue
Levels: Fri Mon Sat Sun Thu Tue Wed

Create factor with given levels
(days.sample <- factor(days.sample, levels = days))

[1] Sun Sat Wed Mon Tue
Levels: Mon Tue Wed Thu Fri Sat Sun

Create factor with ordered levels
(days.sample <- factor(days.sample, levels = days, ordered = TRUE))

[1] Sun Sat Wed Mon Tue
Levels: Mon < Tue < Wed < Thu < Fri < Sat < Sun

Note that factor labels are not the same as levels.

day_names <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")
(days <- factor(days, levels = days, labels = day_names))

[1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Levels: Monday Tuesday Wednesday Thursday Friday Saturday Sunday

DatesDates
R makes it easy to work with dates.

Define a sequence of dates
x <- seq(from=as.Date("2018-01-01"),to=as.Date("2018-05-31"), by=1)
table(months(x))

April February January March May
30 28 31 31 31

Sys.Date() # What day is it?

[1] "2018-09-27"

Sys.time() # What time is it?

[1] "2018-09-27 13:57:46 PDT"

Number of days until the New Year.
as.Date('2019-01-01') - Sys.Date()

Time difference of 96 days

Type ?strptime for a list of possible date formats.

Random numbersRandom numbers
You can generate vectors of random numbers from different distribu�ons.

To make your results reproducible, provide a seed for the generator.

set.seed(123456)

sample(x = 20:100, size = 10) # Random integers

[1] 84 80 50 46 47 35 60 27 92 32

runif(5, min = 0, max = 1) # Uniform distribution

[1] 0.7979891 0.5937940 0.9053100 0.8808486 0.9938366

rnorm(5, mean = 0, sd = 1) # Normal distribution

[1] 1.2588422 -0.8502043 0.7627921 -1.4007445 -0.9466625

Random samplingRandom sampling
You can generate a random sample from the elements of a vector using the func�on
sample.

v <- seq(1, 10)
sample(v, 5) # Sampling without replacement

[1] 8 10 9 6 1

month.name

[1] "January" "February" "March" "April" "May" "June" "July" "Aug

sample(month.name, 10, replace = TRUE) # Sampling with replacement

[1] "July" "November" "March" "February" "October" "January" "December" "Nov

Tables – the contents of a discrete vector can be easily summarized in a table.

x <- sample(v, 1000, replace=TRUE) # Random sample
table(x)

x
1 2 3 4 5 6 7 8 9 10
107 97 92 105 94 113 101 97 110 84

HistogramsHistograms
The contents of a discrete or con�nuous vector can be easily summarized in a histogram.

x <- rnorm(1000, mean = 5, sd = 3)
hist(x)

ExercisesExercises

VectorsVectors
1. Generate and print a vector of 10 random numbers between 5 and 500.
2. Generate a random vector Z of 1000 le�ers (from “a” to “z”). Hint: the variable
letters is already defined in R.

3. Print a summary of Z in the form of a frequency table.
4. Print the list of le�ers that appear an even number of �mes in Z.

MatricesMatrices
1. Create the following 5 by 5 matrix and store it as variable X.

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

2. Create a matrix Y by adding an independent Gaussian noise (random numbers)
with mean 0 and standard devia�on 1 to each entry of X. e.g.

3. Find the inverse of Y.

4. Show numerically that the matrix product of Y and its inverse is the iden�ty
matrix.

Data famesData fames
1. Create the following data frame and name it “exams”.

student score letter late
1 Alice 86 A FALSE
2 Sarah 95 B TRUE
3 Harry 87 B FALSE
4 Ron 99 B FALSE
5 Kate 97 A TRUE

2. Compute the mean score for this exam and print it.
3. Find the student with the highest score and print the corresponding row of

“exams”. Hint: use the func�on which.max().

