Lecture 1: Introductionto R

CME/STATS 195

Lan Huong Nguyen
September 27, 2018

Contents

o Course Objectives & Organization
e The R language
o Setting up R environment

« Basics of coding in R

Course Objectives & Organization

Course Logistics

CME/STATS 195 will run for 4 weeks: 09/27-10/23/2018

o Lectures: Tue, Thu 12:00 PM - 1:20 PM, Building 200 room 034
« Office hours: Mon 4PM, Huang (Basement) Student Area
 Class website: https://cme195.github.io/

« Homework submission: https://canvas.stanford.edu/

o Questions/Communication: https://canvas.stanford.edu/

Grading (Satisfactory/No Credit):

« Homework assignments (40%)
 (Group) final project (40%)
 Participation (20%)

https://cme195.github.io/
https://canvas.stanford.edu/
https://canvas.stanford.edu/

Assignments

Homework:

o work individually
e due the 3rd week of class

Final project:

« work in groups up to 4 students

o title and abstract due the 3rd week of class

« final report and R code due one week after the last class
« details can be found on class website

Late day policy:
e no later than 5 days post due date; 10% penalty per day

https://cme195.github.io/assignments

Pre-requisites and expectations

No formal pre-requisites, but you should have some prior knowledge of statistics and
some programming experience.

The goal of this course is for you to:

o familiarize yourself with R
« learn how to do interesting and practical things quickly in R
o start using R as a powerful tool for data science

We will NOT learn:

e computer programming
o statistics
« big data

This is a short course, so you will not learn everything about R.

Topics Covered

e R Basics: data types and structures, variable assignment etc.

e R as a programming language: syntax, flow control, iteration, functions.
o Importing and tidying data.

« Processing and transforming data with dpLyr.

« Visualizing data with ggp Lot 2.

« Exploratory data analysis (EDA)

o Elements of statics: modeling, predicting and testing.

« Some R tools for supervised & unsupervised learning.

o Generating R Markdown reports for efficient communication.

The R language

What is R?

e R was created by Rob Gentleman and Ross Ihaka in 1994; it is based on the S
language developed at Bell Labs by John Chambers (Stanford Statistics).

o It is an open-source language and environment for statistical computing and
graphics.

o R offers:
= A simple and effective programming language.
= A data handling and storage facility.
= A suite of libraries for matrix computations.
= A large collection of tools for data analysis.
= Facilities for generating high-quality graphics and data display.

« R is highly extensible, but remains a fully planned and coherent system,
rather than an incremental accumulation of specific and inflexible tools.

Who uses R?

Traditionally, academics and researchers. However, recently R has expanded also to
industry and enterprise market. Worldwide usage on log-scale:

PYPL PopularitY of Programming Language

— Java
— Python

CIC++
—R
lll:]nxt Fﬁ/\/\/—/-f\/ T Maﬂah

2005 2010 2015

1%

Source: http://pypl.github.io/PYPL.html

The PYPL Index is created by analyzing how often language tutorials are searched on
Google (generated using raw data from Google Trends).

http://pypl.github.io/PYPL.html

Why should you learn R?

Pros:

o Open source and cross-platform.

o Created with statistics and data in mind; new ideas and methods in statistics
usually appear in R first.

« Provides a wide range of high-quality packages for data analysis and
visualization.

o Arguably, the most commonly used language by data scientists

Cons:

« Performance/Scalability: low speed, poor memory management.

« Some packages are low-quality and provide no support.

e A unconventional syntax and a few unusual features compared to other
languages.

A few alternatives to R:

« Python: fastest growing, general-purpose programming, with data science
libraries.

o SAS: used for statistical analysis; commercial and expensive, slower
development.

o SQL: designed for managing data held in a relational database management
system.

« MATLAB: proprietary, mostly for numerical computing, and matrix
computations.

What makes R good?

e Ris an interpreted language, i.e. programs do not need to be compiled into
machine-language instructions.

e Ris object oriented, i.e. it can be extended to include non-standard data
structures (objects). A generic function can act differently depending on what
objects you passe to it.

e R supports matrix arithmetics.

o R packages can generate publication-quality plots, and interactive graphics.

« Many user-created R packages contain implementations of cutting edge
statistics methods.

What makes R good?

As of September 29, there are 13,083 packages on CRAN, 1,560 on Bioconductor, and
many others on github)

Number of R packages ever published on CRAN
11000
10000
3000
8000 1
7000+
6000 -
50001
4000+
3000
2000

1000 -

1998 2000 2002 2004 2006 2008 2010 2012 2014 2018 2014

Source: http://blog.revolutionanalytics.com/

https://cran.r-project.org/web/packages/index.html
https://www.bioconductor.org/
https://github.com/trending/r?since=weekly
http://blog.revolutionanalytics.com/2017/01/cran-10000.html

“Textbook”

We will use R for Data Science as a primary reference.

OREILLY

d R for Data
SCIENCE

VISUALIZE, MODEL, TRANSFORM, TIDY, AND IMPORT DATA

Hadley Wickham &
Garrett Grolemund

Freely available at: http://r4ds.had.co.nz/

http://r4ds.had.co.nz/

Other useful resources for learning R

e R in a nutshell and introductory book by Joseph Adler - R tutorial
(https://www.tutorialspoint.com/r/r_packages.htm)

« Advanced R book by Hadley Wickham for intermediate programmers
(http://adv-r.had.co.nz/Introduction.html)

« Sw1rl R-package for interactive learning for beginners
(http://swirlstats.com/)

« Data Camp courses for data science, R, python and more
(https://www.datacamp.com/courses)

https://www.tutorialspoint.com/r/r_packages.htm
http://adv-r.had.co.nz/Introduction.html
http://swirlstats.com/
https://www.datacamp.com/courses

Setting up an R environment

Installing R

R is open sources and cross platform (Linux, Mac, Windows).

To download it, go to the Comprehensive R Archive Network CRAN website. Download
the latest version for your OS and follow the instructions.

Each year a new version of R is available, and 2-3 minor releases. You should update
your software regularly.

https://cran.cnr.berkeley.edu/

Running R code

Interpreter mode:

« open a terminal and launch R by calling “R” (or
open an R console).
e type R commands interactively in the command

line, pressing Enter to execute.
e use q() toquitR.

Scripting mode:

o write a text file containing all commands you
want to run

e save your script as an R script file (e.g.
“myscript.R”

« execute your code from the terminal by calling
“Rscript myscript.R”

@ e R Console
; - — @ 5
& <R Il[l||| [—— b
- le)
R wersion 3.3.8 (2016-05-83) -- "Supposedly Educational”

Copyright () 2816 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3. 4.8 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certoin conditiens.

Type "license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R 1s a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation{}' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help(Dd' for on-line help, or

'help.start(}" for an HTML browser interface to help.

Type "q()' to quit R.

[R.app GUI 1.68 (7282) xBo_b4-apple-darwinll.4. @]

[Workspace restored from fUsers/lanhuongnguyens.RData]
[History restored from fUsers/lanhuongnguyens.Rapp.history]

® @ lanhuongnguyen — R — 80x=31

tion for 5
LB (64-b1

in publications.

far an-line help, or
to help.

[Previously saved workspace restored]

R editors

The most popular R editors are:

e Rstudio, an integrated development environment (IDE) for R.
« Emacs, a free, powerful, customizable editor for many languages.

In this class, we will use RStudio, as it is more user-friendly.

https://www.rstudio.com/products/RStudio/
https://www.gnu.org/software/emacs/

Installing RStudio

RStudio is open-source and cross-platform (Linux, Mac, Windows).
Download and install the latest version for your OS from the official website.

@ RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help EH @ & %3] f @ = 53%@) Sat7:59PM Q =
| NON RStudio
Q] ~ T - B B * Addins - &| Project: (None) =
137 Untitled1 Environment History
= Source on Save Q il ~# Run Y% |+ Source - T B _Import Dataset - y List =
e Global Environment -
Values
fibs num [1:32] 1 2358 13 21 34 55 89 ...
k 33
kplusifibs 5702887
multls num [1:66] 15 3@ 45 60 75 90 105 120 135 150 ...
mult3 num [1:333] 3 6 9 12 15 18 21 24 27 30 ...
mult5 num [1:199] 5 1@ 15 2@ 25 3@ 35 4@ 45 50 ...
N 4e+06
theta num [1:629] @ .01 ©.02 0.03 0.04 0.05 0.06 0.07 0.08 ©.@9 ...
vec int [1:999] NA NA 3 NA 5 6 NANA O 10 ...
X num [1:629] 7.6 7.66 7.73 7.8 7.9 ...
Yy num [1:629] @ ©.0766 ©.1545 0.2342 0.316 ...
Functions

f function (theta)

ilail (Top Level) R Script

Console

Files Plots Packages Help Viewer

R version 3.3.0 (2016-05-03) -- "Supposedly Educational" & Export -
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type 'g()" to quit R.

[Workspace loaded from ~/.RData]

>

https://www.rstudio.com/products/rstudio/download/#download

RStudio window

Ql~| 2~ &) | | M Go to file/function | + Addins ~ i data-analysis ~
37 mpg-plot.R * =] Environment History —
& 'SourceonSave 4 / ~ i ~#Run ®% - Source - <% [_#Import Dataset ~ 3" List » (=

library(ggplot2) "}, Global Environment ~

geom_point(aes(colour = class))

1
2
3 ggplot(mpg, aes(x = displ, y = hwy)) +
: Environment is empty

[]
Edltor Files Plots Packages Help Viewer =]
1:1 Level) * R Script * =
(Top Leve)) el) & Zoom EExport~ @ % - | @
Console ~/Documents/r4ds/data-analysis/ = [
> library(ggplot2) :
> ggplot(mpg, aes(x = displ, y = hwy)) + o
+ geom_point(aes(colour = class)) 40-
>
: class
: ® 2seater
(X J
°) ® compact
o
>30- o::o:o ° ¢ midsize
e o oo o o
< o0 ® (XX} ® minivan
000E 000 ®OO [[]
° wwmse e ", e pickw
[BN] o000 o [
eeoe o o ® subcompact
° []
20- ® o ® ® suv
o000 o«® []
o 000 (X _J
.) e @ o000 0 0 [J
[o0
o L_J e o0
[J [J
°
Console Output s : s &
displ

RStudio preferences

m File Edit Code View Plots Session Build Debug Profile Tools Window Help EH @ & 33 f @ = 53% @) Sat8:00PM Q =
[) About RStudio RStudio

{ .

[+ |
= Preferences... 88,

- Addins - & Project: (None) ~

Environment History

27 Unt
Hide RStudio #EH Q Z |1 ~#Run &% < Source -~ © [#lImportDataset » 3 List =
a Hide Others "_3H), Global Environment ~
Values
.) fibs num [1:32] 1 2358 13 21 34 5589 ...
Quit RStudio #Q K 33
kpluslfibs 5702887
multls num [1:66] 15 3@ 45 6@ 75 9@ 105 120 135 150 ...
mult3 num [1:333] 3 6 9 12 15 18 21 24 27 3@ ...
mult5 num [1:199] 5 1@ 15 2@ 25 3@ 35 40 45 50 ...
N 4e+06
theta num [1:629] @ ©9.01 .02 ©.03 0.04 0.05 0.06 0.07 0.08 ©.09 ...
vec int [1:999] NA NA 3 NA 56 NANA O 10 ...
X num [1:629] 7.6 7.66 7.73 7.8 7.9 ...
Yy num [1:629] @ ©.0766 ©.1545 0.2342 0.316 ...
Functions
f function (theta)
dlal (Top Level) R Script
Console . .
Files Plots Packages Help Viewer
R version 3.3.8 (2016-05-03) -- "Supposedly Educational" & Export =

Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type "'g()' to quit R.

[Workspace loaded from ~/.RData]

>

RStudio layout

@ RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help EH @ & 33 L « @ = 53%@) Sat8:01PM Q =
[JON) RStudio
Q] - r - B B - Addins - & Project: (None) ~
(37 Untitled1 Environment History
T =] Source on Save Q /7 - ~#Run | 99 Source ~ T [| _f"Import Dataset ~ i List =
1 Global Environment =
Values
fibs num [1:32] 1 2358 13 21 34 5589 ...
k EE]
Options
0 45 60 75 90 105 120 135 150 ...
) Choose the layout of the panes in RStudio by selecting from the controls in 9 12 15 18 21 24 27 30
[i; each quadrant. ot
General © 15 20 25 30 35 40 45 50 ...
[Source #} [Environment, History, Build, VC #}
v| Environment .01 0.02 0.03 0.04 .05 0.06 0.07 0.08 0.09 ...
Code V| History NA 3 NAS56NANAO 10 ...
fﬂ Files 7.66 7.73 7.8 7.9 ...
Appearance Plots .0766 0.1545 0.2342 0.316 ...
Packages
| Help b)
Pane Layout /| Build
v/ VCS
Packages Viewer
11 (Top Level) v| Connections
Console R Markdown [Console C] [Files, Plots, Packages, Help, Vi C]
.) @ D Environment
R version 3.3.0 (2016-085-03) -- "Supposedly Educational" — History
Copyright (C) 2016 The R Foundation for Statistical Computing Sweave 7 Files
Platform: x86_64-apple-darwinl3.4.0 (64-bit) B
v V| Plots
R is free software and comes with ABSOLUTELY NO WARRANTY. Spelling v/ Packages
You are welcome to redistribute it under certain conditions. 3 v He'lp
Type 'licenseQ)’ or 'licence()' for distribution details. Git/SVN Build
VCS
Natural language support but running in an English locale JEr V| Viewer
Publishing Connections
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.
OK d | Appl
Type 'demo()' for some demos, 'help()' for on-line help, or s ey
-

"help.start()' for an HTML browser interface to help.
Type "'g()' to quit R.

[Workspace loaded from ~/.RData]

RStudio apprearance

@ RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help EH @ 8 % L f @ = 53% M) Sat8:01PM Q =
‘00 ® RStudio
]~ * - B 3 * Addins - A Project: (None) ~
(37 Untitled1 Environment = History
] Source on Save Q 72 - ~#Run %% | < Source =~ T [_#Import Dataset ~ = & List ~
e Global Environment -
Values
fibs num [1:32] 1 23 58 13 21 34 55 89 ...
k 33
Options

@ 45 60 75 90 105 120 135 150 ...

Editor font:
E‘ r . 912 15 18 21 24 27 30 ...
R M lot <- function (x o0
el | i o e S oot D 15 20 25 30 35 40 45 50 ...
Font size: if (is.function(x) &&
is.null(attr(x, "class"))) .01 .02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
Code . o NA 3 NAS56 NANAO 10 ...
Editor theme: if (missing(y)) 7.66 7.73 7.8 7.9
j Ambiance y <= NULL . . : S
Appearance | |Chaos .0766 0.1545 ©.2342 0.316 ...
Chrome .
o hasylab <- function(...)
: gouds Midnight lall(is.naC)
Pane Layout Cobalt | pmatchgncl:mggcust(, D),
Crimson Editor yLabi))
Dawn :
Pack: if (hasylab(...
1B (Top Level) ackages Dreamweaver p%ot.¥unc£iong)3<, ¥ o))
Eclipse
e | Idle Fingers 1
= R Markdown Katzenmilch ¢ ;%ot.funct'i.onc
.) @;;‘ Kr Theme X, ¥
R version 3.3.0 (2016-05-03) -- "Supposedly Educational” » Merbivore Soft ylab = paste(
Copyright (C) 2016 The R Foundation for Statistical Computing Sweave Merbivore deparse(substitute(x)),
Platform: x86_64-apple-darwinl3.4.@ (64-bit) Mono Industrial "™,
‘/> Monokai)
R is free software and comes with ABSOLUTELY NO WARRANTY. Spelling Pastel On Dark b e
You are welcome to r'ed?str'ibute it under S:er‘tgin cond?tions. 3 Solarized Light UseMethod("plot™)
Type 'license()' or 'licence()' for distribution details. Git/SVN TextMate.
Natural language support but running in an English locale JEF
Publishing

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

OK Cancel Apply

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.

Type 'g()" to quit R.

[Workspace loaded from ~/.RData]

>

More on RStudio cuztomization can be found here

https://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio

R document types

@ RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help EH @ & 33 L { @ = 53%@) Sat7:59PM Q =

[JON) RStudio
Ql-lc- H B * Addins - & Project: (None) ~
@] RScript 438N Environment History
i® R Notebook Source on Save Q |1 ~#Run &4 & Source -~ T [| _f"Import Dataset ~ y List =
@7 R Markdown... Global Environment =
B Shiny Web App... Values
3 Text File fibs num [1:32] 1 2358 13 21 34 5589 ...
P) k 33
] Ct+ File kplusifibs 5702887
] RSweave multls num [1:66] 15 3@ 45 6@ 75 9@ 105 120 135 150 ...
@1 RHTML mult3 num [1:333] 3 6 9 12 15 18 21 24 27 3@ ...
R Presentation multS num [1:199] 5 1@ 15 2@ 25 3@ 35 40 45 50 ...
é?) N 4e+06
= R Documentation theta num [1:629] @ 0.91 .02 2.03 0.04 0.05 0.96 0.07 0.08 0.09 ...
vec int [1:999] NA NA 3 NA 56 NANA O 10 ...
X num [1:629] 7.6 7.66 7.73 7.8 7.9 ...
y num [1:629] @ ©.0766 ©.1545 0.2342 0.316 ...
Functions
f function (theta)
dlal (Top Level) R Script
Console . .
Files Plots Packages Help Viewer

R version 3.3.0 (2016-05-03) -- "Supposedly Educational™ & Export =

Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type "'g()' to quit R.

[Workspace loaded from ~/.RData]

>

R document types

« R Script a text file containing R commands stored together.

« R Markdown files can generate high quality reports contatining notes, code
and code outputs. Python and bash code can also be executed.

« R Notebook is an R Markdown document with chunks that can be executed
independently and interactively, with output visible immediately beneath
the input.

e R presentation let’s you author slides that make use of R code and LaTeX
equations as straightforward as possible.

e R Sweave enables the embedding of R code within LaTeX documents.

o Other documents

https://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_scrpt.html
http://rmarkdown.rstudio.com/lesson-1.html
http://rmarkdown.rstudio.com/r_notebooks.html
https://support.rstudio.com/hc/en-us/articles/200486468-Authoring-R-Presentations
https://support.rstudio.com/hc/en-us/articles/200552056-Using-Sweave-and-knitr
http://rmarkdown.rstudio.com/formats.html

R packages
« R packages are a collection of R functions, complied code and sample data.

« They are stored under a directory called library in the R environment.

« Some packages are installed by default during R installation and are always
automatically loaded at the beginning of an R session.

« Additional packages by the user from:
= CRAN The first and biggest R repository.
= Bioconductor: Bioinformatics packages for the analysis of biological
data.
= github: packages under development

https://cran.r-project.org/web/packages/available_packages_by_name.html
http://bioconductor.org/
https://github.com/

Installing R packages from different repositories:
e From CRAN:

1install.packages("Package Name'"), e.qg.
install.packages('"glmnet")

 From Bioconductor:

First, load Bioconductor script. You need to have an R version >=3.3.0.
source("https://bioconductor.org/biocLite.R")

Then you can install packages with: biocLite("Package Name'"), e.qg.
biocLite("limma")

e From github:

You need to first install a package "devtools" from CRAN
install.packages('"devtools")

Load the "devtools" package
library(devtools)

Then you can install a package from some user's reporsitory, e.g.
install github("twitter/AnomalyDetection")

or using install git("url"), e.g.
install git("https://github.com/twitter/AnomalyDetection")

Where are R packages stored?

.1ibPaths()

[1] "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "/usr/local/lib/R/site-library"

installed.packages()[1:5, 1:3]

Hit Package LibPath Version
abind "abind" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.4-5"
acepack "acepack" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.4.1"
adaptiveGPCA "adaptiveGPCA" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "0.1.1"
ade4 "ade4" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "1.,7-11"
ADGofTest "ADGofTest" "/home/lanhuong/R/x86_64-pc-linux-gnu-library/3.4" "0.3"
search()

[1] ".GlobalEnv" "package:stats" "package:graphics" '"package:grDevices" "package:

Basics of coding inR

R as a calculator

e R can be used as a calculator, e.g.

23 + sin(pi/2)
[1] 24
abs(-10) + (17-3)74
[1] 38426
4 * exp(10) + sqrt(2)
[1] 88107.28
« Intuitive arithmetic operators: addition (+), subtraction (-), multiplication (*),
division: (/), exponentiation: (™), modulus: (%%)

e Built-in constants:
pi, LETTERS, letters, month.abb, month.name

Variables

« Variables are objects used to store various information.

« Variables are nothing but reserved memory locations for storing values.
 In contrast to other programming languages like C or java, in R the variables
are NOT declared as some data type/class (e.g. vectors, lists, data-frames).

« When variables are assigned with R-Objects, the data type of the R-object
becomes the data type of the variable.

Variable assignment

Variable assignment can be done using the following operators: =, <-, ->:

’

var.1l = 34759
var.2 <-"learn R"

TRUE -> var.3

The values of the variables can be printed with print () function, or cat().

print(var.1)

[1] 34759

cat('"var.2 is ", var.2)

var.2 is learn R
cat("var.3 is ", var.3 ,"\n")

var.3 1s TRUE

Naming variables

Variable names must start with a letter, and can only contain:

e |letters o o §

first.variable <- 1
¢ numbers SecondVariable <- 2

variable 2 <- 1 + first.variable
e the character _ R, NG ENIEeE & 4

e the character.

Some words are reserved in R and cannot be used as object names:

« Inf and - Inf which respectively stand for positive and negative infinity, R
will return this when the value is too big, e.g. 271024

« NULL denotes a null object. Often used as undeclared function argument.

e NA represents a missing value (“Not Available”).

« NaN means “Not a Number”. R will return this when a computation is
undefined, e.g. 0/0.

Data types

Values in R are limited to only 6 atomic classes:

e Logical: TRUE/FALSE or T/F

e« Numeric: 12.4, 30, 2, 1009, 3.141593
 Integer: 2L, 34L, -21L, OL
« Complex:3 + 21, -10 - 41

e Character: 'a', '23.5', "good",

"Hello world!",

"TRUE"

« Raw (holding raw bytes): as.raw(2), charToRaw("Hello")

Objects can have different structures based on atomic class and dimensions:

Dimensions Homogeneous Heterogeneous
1d vector list

2d matrix data.frame

nd array

R also supports more complicated objects built upon these.

Variable class

R is a dynamically typed language, which means that we can change a variable’s data
type of the same variable again and again when using it in a program.

X <- "Hello"
cat("The class of x is", class(x),"\n")

The class of x 1s character

X <- 34.5
cat(" Now the class of x is ", class(x),"\n")

H# Now the class of X 1s numeric

X <- 27L
cat (" Next the class of x becomes ", class(x),"\n")
#it Next the class of x becomes integer

You can see what variables are currently available in the workspace by calling

print(ls())

[1] "a" "first.variable" "Secondvariable" "var.1" "var.2"

Vectors

Vectors are the simplest R data objects; there are no scalars in R.

Create a vector with "combine" # If mixed, on-character values are coerced
x1 <- c¢(1, 3, 7:12) # to character type
X2 <- c¢('apple', 'banana', 'watermelon') (s <- c('apple', 123.56, 5, TRUE))
Look at content of a variable:
x1
[1] "apple" "123.56" "5" "TRUE"

[1] 1 3 7 8 9 10 11 12 _
Generate numerical sequence, e.g. Ssequence

from 5 to 7 with 0.4 increment.
print(x2) (v <- seq(5, 7, by = 0.4))

[1] "apple" "banana" "watermelon" ## [1] 5.0 5.4 5.8 6.2 6.6 7.0

Including in () also prints content
(x3 <- 1:5)

[1]1 1 2 3 4 5

Vector indexing

« Elements of a vector can be accessed i S8 I e g S g RS e
using indexing, with square brackets,
[] ## [1] "Thurs"

 Unlike in many languages, in R (weekend.days <- daysle(d, 7)])
indexing starts with 1. ## [1] "Sun" "sat"

« Using negative integer value indices
drops corresponding element of the
vector.

o Logical indexing (TRUE/FALSE) is (birthday <- days[c(F, F, F, F, T, F, F)])
allowed. ## [1] "Thurs"

(week.days <- days[c(-1,-7)])

[1] "Mon" "Tue" "wed" "Thurs" "Fri"

Logical operations

Comparisons (==,!=,>,>=,<,<=)
== 2

[1] FALSE

Check whether number 1s even
(%% 1s the modulus)
(5 %% 2) ==

[1] FALSE

Logical indexing
X <- seq(l1,10)
X[(x%%2) == 0]

[1] 2 4 6 8 10

Element-wise comparison
c(1,2,3) > c(3,2,1)

[1] FALSE FALSE TRUE

Check whether numbers are even,
one by one
(seq(1,4) %% 2) == 0

[1] FALSE TRUE FALSE TRUE

Logical indexing
X <- seq(l1,10)
X[x>=5]

[1] 5 6 7 8 9 10

Vector arithmetics

Two vectors of same length can be added, subtracted, multiplied or divided. Vectors can
be concatenated with combine function c ().

vl <- ¢(1,4,7,3,8,15) (vec.ratio <- v1/v2)
v2 <- ¢(12,9,4,11,0,8)

[1] 0.08333333 0.44444444 1.75000000 0.27272
(vec.sum <- v1+v2)

[1] 13 13 11 14 8 23 vec.concat <- c(vl, v2)

length(vec.concat)

(vec.difference <- vi-v2)
[1] 12

[1] -11 -5 3 -8 8 7

(vec.product <- v1*v2)

[1] 12 36 28 33 0 120

Recycling
« Recycling is an automatic lengthening of vectors in certain settings.

vi <- ¢(1,2,3,4,5,6,7,8,9,10)
vli * 2

#%# [1] 2 4 6 8 10 12 14 16 18 20

« When two vectors of different lengths, R will repeat the shorter vector until
the length of the longer vector is reached.

vli * c(1,2)
[1] 1 4 3 8 512 7 16 9 20
vi + ¢(3, 7, 10)

[1] 4 9 13 7 12 16 10 15 19 13

Note: a warning is not an error. It only informs you that your code continued to run, but
perhaps it did not work as you intended.

Matrices

Matrices in R are objects with homogeneous elements (of the same type), arranged in a
2D rectangular layout. A matrix can be created with a function:

matrix(data, nrow, ncol, byrow, dimnames)

where:

data is the input vector with elements of the matrix.

nrow is the number of rows to be crated

by row is a logical value. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is
filled by rows.

dimnames is NULL or a list of length 2 giving the row and column names respectively

(N <- matrix(seq(1,20), nrow = 4, byrow = FALSE (M <- matrix(seq(1,20), nrow = 5, byrow = TRUE)
#i [,1]1 [,2] [,3] [,4] [/,5] #i [,11 [,2] [,3] [,4]
[1,] 1 5 9 13 17 ## [1,] 1 2 3 4
[2,] 2 6 10 14 18 ## [2,] 5 6 7 8
[3,] 3 7 11 15 19 ## [3,] 9 10 11 12
[4,] 4 8 12 16 20 ## [4,] 13 14 15 16
[5,] 17 18 19 20

Accessing Elements of a Matrix

P[c(3,2),]
rownames <- c("rowl", "row2", "row3")
colnames <- c¢("col1l1", "col2", "col3", "col4d", "c

(P <- matrix(c(5:19), nrow = 3, byrow = TRUE, i coll col2 col3 col4 col5
dimnames = list(rownames, colnames' ## rowd 15 16 17 18 19
row?2 10 11 12 13 14
H# coll col2 col3 col4d4 col5s
rowl 5 6 7 8 9 P[, c(3, 1)]
row?2 10 11 12 13 14
row3 15 16 17 18 19 it col3 coll
rowl V4 5
P[2, 5] ## row2 12 10
row3 17 15
[1] 14
P[1:2, 3:5]
P[2,]
H# col3 col4 col5s
#H# rowl 4 8 9
coll col2 col3 col4 cols ## row2 12 13 14

HHt 10 11 12 13 14

P[, 3]

rowl row2 row3
Hit 7 12 17

Matrix Computations

Matrix addition and subtraction needs matrices of same dimensions:

A * B
(A <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2))
#it [,1] [,2] [,3]
i [,1] [,2] [,3] ## [1,] 15 0 6
[1,] 3 -1 2 ## [2,] 18 36 24
##* [2,] 9 4 6
A/ B
(B <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2))
#if [,1] [,2] [,3]
#Ht [,1] [,2] [,3] ## [1,] 0.6 -Inf 0.6666667
[1,] 5 0 3 ## [2,] 4.5 0.4444444 1,5000000
[2,] 2 9 4
t(A)
A + B
#it [,1] [,2]
#it [,1] [,2] [,3] ## [1,] 3 9
[1,] 8 -1 5 ## [2,] -1 4
[2,] 11 13 10 ## [3,] 2 6

Matrix Algebra

True matrix multiplication A X B, withA € R™" and B € R

P
(AB);; = ZAikBkj
k=1

A %*% t(B)

#it [,1] [,2]
[1,] 21 5
[2,] 63 78

t(A) %*% B

[,1] [,2] [,8]
[1,] 33 81 45
[2,] 3 36 13
[3,] 22 54 30

More on matrix algebra here

http://www.statmethods.net/advstats/matrix.html

Arrays

 In R, arrays are data objects with more than two dimensions, e.g. a (4x3x2)-
array has 2 tables of size 4 rows by 3 columns.

e Arrays can store only one data type and are created usingarray ().
o Accessing and subsetting elements of an arrays is similar to accessing
elements of a matrix.

row.names <- c("ROw1", "ROwW2", "ROW3", "ROwW4")
column.names <- c("CoL1","CoOL2","COL3")
matrix.names <- c('"Matrixl1", "Matrix2")

(arr <- array(

seq(1l, 24), dim = c(4,3,2),

dimnames = list(row.names, column.names,
matrix.names)))

, , Matrixi

HH#

#it COL1 COL2 coL3
ROW1 1 5 9
ROW2 2 6 10
ROW3 3 7 11
ROW4 4 8 12
HH#

, , Matrix2

HH#

#it COL1 COL2 coL3

ROW1 13 17 21
ROW2 14 18 22
ROW3 15 19 23
ROW4 16 20 24

Lists

Lists can contain elements of different types e.g. numbers, strings, vectors and/or
another list. List is created using L1st () function.

v <- c¢("Jan","Feb", "Mar") (n.list <- list(
M <- matrix(c(1,2,3,4),nrow=2) first = "Jane", last = "Doe",
1st <- list('"green", 12.3) gender = "Female", yearOfBirth = 1990))
(u.list <- list(v, M, 1lst))
$first
[[1]] ## [1] "Jane"
[1] "Jan" "Feb" "Mar" Hit
i ## $last
[[2]] ## [1] "Doe"
#it [,1] [,2] #it
[1,] 1 3 ## $gender
[2,] 2 4 ## [1] "Female"
Hit Ht
[[3]] ## $yearOfBirth
[[3110[2]1] ## [1] 1990
[1] "green"
Hit
Hit 3 2
i [Srei)

[1] "Female"
u.list[[2]]

[,1] [,2] n.list$year0fBirth
1 3

[1,]

(2,1 2 4 ## [1] 1990

Data-frames

A data frame is a table or a 2D array-like structure, whose:

« Columns can store data of different types e.g. numeric, character etc.
o Each column must contain the same number of data items.

e The column names should be non-empty.

« The row names should be unique.

employees <- data.frame(
row.names = c¢("E1", "E2", "E3","E4", "E5"),
name = c¢("Rick","Dan","Michelle", "Ryan", "Gary"),
salary = ¢(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")),
stringsAsFactors = FALSE)

employees

#it name salary start_date
E1 Rick 623.30 2012-01-01
E2 Dan 515.20 2013-09-23
E3 Michelle 611.00 2014-11-15
E4 Ryan 729.00 2014-05-11

ES Gary 843.25 2015-03-27

Useful functions for data-frames

str(employees)

'data.frame': 5 obs. of 3 variables:

$ name : chr "Rick" "Dan" "Michelle" "Ryan"

$ salary : num 623 515 611 729 843

$ start_date: Date, format: "2012-01-01" "2013-09-23"
head(employees, 2)

Hit name salary start_date

E1 Rick 623.3 2012-01-01

E2 Dan 515.2 2013-09-23

summary(employees)

Hit name salary start_date

Length:5 Min. :515.2 Min. :2012-01-01
Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
Mode :character Median :623.3 Median :2014-05-11
Hi Mean :664.4 Mean :2014-01-14
Hit 3rd Qu.:729.0 3rd Qu.:2014-11-15
Hi Max. :843.2 Max. :2015-03-27

"2014-11-15"

"2014-05-11"

Subsetting data-frames

o We can extract specific columns:

employees$name

employees[, c('"name",

Ht

Ht
Ht
Ht
Ht
Ht
Ht

[1] "Rick"
name
El Rick
E2 Dan
E3 Michelle
E4 Ryan
E5 Gary

" Dan "

salary
623.30
515.20
611.00
729.00
843.25

"salary'")]

"Michelle" "Ryan"

o We can extract specific rows:

employees["E1l",]
employees[c("E2", "E3"),]

employees[1,]
employees[c(2, 3),]

#H# name salary start_date
E1 Rick 623.3 2012-01-01

#H# name salary start_date
E2 Dan 515.2 2013-09-23
E3 Michelle 611.0 2014-11-15

Adding data to data-frames

« Add a new column using assignment Adding a new row using rbind ()
operator: function:

employees$dept <- new.employees <- data.frame(
c("IT", "Operations”, "IT", "HR", "Finance") row.names = paste0("E", 6:8),

employees name = c("Rasmi", "Pranab", "Tusar"),

salary = ¢(578.0,722.5,632.8),
start_date = as.Date(c('"2013-05-21","2013-07-:

HH ngme Salary Start_date dept dept — C("IT”,"OperationS”,”Fianance"),
E1 Rick 623.30 2012-01-01 IT stringsAsFactors = FALSE)
E2 Dan 515.20 2013-09-23 Operations
E3 Michelle 611.00 2014-11-15 IT
E4 Ryan 729.00 2014-05-11 HR) : g
4t E5 Gary 843.25 2015-03-27 Finance (all.employees <- rbind(employees, new.employees
#H# name salary start_date dept
E1 Rick 623.30 2012-01-01 IT
E2 Dan 515.20 2013-09-23 Operations
E3 Michelle 611.00 2014-11-15 IT
E4 Ryan 729.00 2014-05-11 HR
ES5 Gary 843.25 2015-03-27 Finance
EO Rasmi 578.00 2013-05-21 IT

E7 Pranab 722.50 2013-07-30 Operations
E8 Tusar 632.80 2014-06-17 Fianance

Factors

Factors are used to categorize the data and store it as levels. They are useful for
variables which take on a limited number of unique values.

days <_ C(”MOﬂ”, "Tue", |lwed||, "ThU", "Fri”, ”Sat”, ”SUI’]”)
is.factor(month.name)

[1] FALSE
class(days)

[1] "character"

If not specified, R will order character type by alphabetical order.

(days <- factor(days))

[1] Mon Tue Wed Thu Fri Sat Sun
Levels: Fri Mon Sat Sun Thu Tue Wed

is.factor(days)

[1] TRUE

Factors ordering

days.sample <- sample(days, 5)
days.sample

[1] Sun Sat Wed Mon Tue
Levels: Fri Mon Sat Sun Thu Tue Wed

(days.sample <- factor(days.sample, levels = days))

[1] Sun Sat Wed Mon Tue
Levels: Mon Tue Wed Thu Fri Sat Sun

(days.sample <- factor(days.sample, levels = days, ordered = TRUE))

[1] Sun Sat Wed Mon Tue
Levels: Mon < Tue < Wed < Thu < Fri < Sat < Sun

Note that factor labels are not the same as levels.

day_names <- c("Monday", "Tuesday'", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")
(days <- factor(days, levels = days, labels = day_names))

[1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Levels: Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Dates

R makes it easy to work with dates.

Define a sequence of dates
X <- seq(from=as.Date('"'2018-01-01"),to=as.Date("2018-05-31"), by=1)
table(months(x))

Hi

Hit April February January March May
Hi 30 28 31 31 31
Sys.Date() # What day 1is 1it?

[1] "2018-09-27"
Sys.time() # What time 1is 1it?
[1] "2018-09-27 13:57:46 PDT"

Number of days until the New Year.
as.Date('2019-01-01") - Sys.Date()

Time difference of 96 days

Type ?strptime for a list of possible date formats.

Random numbers

You can generate vectors of random numbers from different distributions.

To make your results reproducible, provide a seed for the generator.

set.seed(123456)

sample(x = 20:100, size = 10)

[1] 84 80 50 46 47 35 60 27 92 32

runif(5, min = 0, max = 1)

[1] 0.7979891 0.5937940 0.9053100 0.8808486 0.9938366
rnorm(5, mean = 0, sd = 1)

[1] 1.2588422 -0.8502043 0.7627921 -1.4007445 -0.9466625

Random sampling

You can generate a random sample from the elements of a vector using the function
sample.

v <- seq(1l, 10)
sample(v, 5)

[1] 810 9 6 1

month.name

[1] "January" "February" "March" "April" "May" "June" "July" "Aug
sample(month.name, 10, replace = TRUE)

[1] "July" "November" '"March" "February" "October" "January" "December" "Nov

Tables - the contents of a discrete vector can be easily summarized in a table.

X <- sample(v, 1000, replace=TRUE)
table(x)

#H# X
#HH# 1 2 3 4) 6 7 8 9 10
107 97 92 105 94 113 101 97 110 84

Histograms
The contents of a discrete or continuous vector can be easily summarized in a histogram.

X <- rnorm(1000, mean = 5, sd = 3)
hist(x)

Histogram of x

250
|

200
I

150
|

Frequency

100
I

50

Exercises

Vectors

1. Generate and print a vector of 10 random numbers between 5 and 500.

“u_n ()

2. Generate a random vector Z of 1000 letters (from “a” to “z”). Hint: the variable

letters is already defined in R.
3. Print a summary of Z in the form of a frequency table.
4. Print the list of letters that appear an even number of times in Z.

Matrices

1. Create the following 5 by 5 matrix and store it as variable X.

#i# [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

2. Create a matrix Y by adding an independent Gaussian noise (random numbers)
with mean O and standard deviation 1 to each entry of X. e.g.

3. Find the inverse of Y.

4. Show numerically that the matrix product of Y and its inverse is the identity
matrix.

Data fames

1. Create the following data frame and name it “exams”.

HH# student score letter late

1 Alice 86 A FALSE
H# 2 Sarah 95 B TRUE
3 Harry 87 B FALSE
H#H# 4 Ron 99 B FALSE
5 Kate 97 A TRUE

2. Compute the mean score for this exam and print it.
3. Find the student with the highest score and print the corresponding row of

“exams”. Hint: use the function which.max().

