library(tidyverse)
Exercise 1: Customized scatter plot
You will try to recreate a plot from an Economist article showing the relationship between well-being and financial inclusion.
You can find the accompanying article at this link
The data for the exercises EconomistData.csv
can be downloaded from the class github repository.
url <- paste0("https://raw.githubusercontent.com/cme195/cme195.github.io/",
"master/assets/data/EconomistData.csv")
dat <- read_csv(url)
Parsed with column specification:
cols(
Country = col_character(),
SEDA.Current.level = col_double(),
SEDA.Recent.progress = col_double(),
Wealth.to.well.being.coefficient = col_double(),
Growth.to.well.being.coefficient = col_double(),
Percent.of.15plus.with.bank.account = col_double(),
EPI_regions = col_character(),
Region = col_character()
)
head(dat)
- Create a scatter plot similar to the one in the article, where the x axis corresponds to percent of people over the age of 15 with a bank account (the
Percent.of.15plus.with.bank.account
column) and the y axis corresponds to the current SEDA score SEDA.Current.level
.
- Color all points blue.
- Color points according to the
Region
variable.
- Overlay a fitted smoothing trend on top of the scatter plot. Try to change the span argument in
geom_smooth
to a low value and see what happens.
- Overlay a regression line on top of the scatter plot Hint: use
geom_smooth
with an appropriate method argument.
- Facet the previous plot by
Region
.
Exercise 2: Distribution of categorical variables
- Generate a bar plot showing the number of countries included in the dataset from each
Region
.
- Rotate the plot so the bars are horizontal
Exercise 3: Distribution of continuous variables
- Create boxplots of SEDA scores,
SEDA.Current.level
separately for each Region
.
- Overlay points on top of the box plots
- The points you added are on top of each other, in order to distinguish them jitter each point by a little bit in the horizontal direction.
- Now substitute your boxplot with a violin plot.
LS0tCnRpdGxlOiAiTGVjdHVyZSA0OiBFeGVyY2lzZXMiCmRhdGU6IE9jdG9iZXIgOXRoLCAyMDE4Cm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBkZl9wcmludDoga2FibGUKLS0tCgpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmBgYAoKCiMgRXhlcmNpc2UgMTogQ3VzdG9taXplZCBzY2F0dGVyIHBsb3QgCgpZb3Ugd2lsbCB0cnkgdG8gcmVjcmVhdGUgYSBbcGxvdF0oaHR0cHM6Ly93d3cuZWNvbm9taXN0LmNvbS9zaXRlcy9kZWZhdWx0L2ZpbGVzL2ltYWdlY2FjaGUvMTI4MC13aWR0aC9pbWFnZXMvMjAxNi8wNy9ibG9ncy9ncmFwaGljLWRldGFpbC8yMDE2MDcyM193b2MxNTVfMS5wbmcpIGZyb20gYW4gRWNvbm9taXN0IGFydGljbGUKc2hvd2luZyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gd2VsbC1iZWluZyBhbmQgZmluYW5jaWFsIGluY2x1c2lvbi4KCllvdSBjYW4gZmluZCB0aGUgYWNjb21wYW55aW5nIGFydGljbGUgYXQgdGhpcyBbbGlua10oaHR0cDovL3d3dy5lY29ub21pc3QuY29tL2Jsb2dzL2dyYXBoaWNkZXRhaWwvMjAxNi8wNy9kYWlseS1jaGFydC0xMykKClRoZSBkYXRhIGZvciB0aGUgZXhlcmNpc2VzIGBFY29ub21pc3REYXRhLmNzdmAgY2FuIGJlIGRvd25sb2FkZWQgZnJvbSAKdGhlIGNsYXNzIGdpdGh1YiByZXBvc2l0b3J5LgoKYGBge3J9CnVybCA8LSBwYXN0ZTAoImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9jbWUxOTUvY21lMTk1LmdpdGh1Yi5pby8iLAogICAgICAgICAgICAgICJtYXN0ZXIvYXNzZXRzL2RhdGEvRWNvbm9taXN0RGF0YS5jc3YiKQpkYXQgPC0gcmVhZF9jc3YodXJsKQpgYGAKCmBgYHtyfQpoZWFkKGRhdCkKYGBgCgoKMS4gQ3JlYXRlIGEgc2NhdHRlciBwbG90IHNpbWlsYXIgdG8gdGhlIG9uZSBpbiB0aGUgYXJ0aWNsZSwgd2hlcmUgCnRoZSB4IGF4aXMgY29ycmVzcG9uZHMgdG8gcGVyY2VudCBvZiBwZW9wbGUgb3ZlciB0aGUgYWdlIG9mIDE1IHdpdGggYSAKYmFuayBhY2NvdW50ICh0aGUgYFBlcmNlbnQub2YuMTVwbHVzLndpdGguYmFuay5hY2NvdW50YCBjb2x1bW4pCmFuZCB0aGUgeSBheGlzIGNvcnJlc3BvbmRzIHRvIHRoZSBjdXJyZW50IFNFREEgc2NvcmUgYFNFREEuQ3VycmVudC5sZXZlbGAuCjEuIENvbG9yIGFsbCBwb2ludHMgYmx1ZS4KMS4gQ29sb3IgcG9pbnRzIGFjY29yZGluZyB0byB0aGUgYFJlZ2lvbmAgdmFyaWFibGUuCjEuIE92ZXJsYXkgYSBmaXR0ZWQgc21vb3RoaW5nIHRyZW5kIG9uIHRvcCBvZiB0aGUgc2NhdHRlciBwbG90LiBUcnkgdG8KY2hhbmdlIHRoZSBzcGFuIGFyZ3VtZW50IGluIGBnZW9tX3Ntb290aGAgdG8gYSBsb3cgdmFsdWUgYW5kIHNlZSB3aGF0IGhhcHBlbnMuCjEuIE92ZXJsYXkgYSByZWdyZXNzaW9uIGxpbmUgb24gdG9wIG9mIHRoZSBzY2F0dGVyIHBsb3QgCkhpbnQ6IHVzZSBgZ2VvbV9zbW9vdGhgIHdpdGggYW4gYXBwcm9wcmlhdGUgbWV0aG9kIGFyZ3VtZW50LiAKMS4gRmFjZXQgdGhlIHByZXZpb3VzIHBsb3QgYnkgYFJlZ2lvbmAuCgojIEV4ZXJjaXNlIDI6IERpc3RyaWJ1dGlvbiBvZiBjYXRlZ29yaWNhbCB2YXJpYWJsZXMKCjEuIEdlbmVyYXRlIGEgYmFyIHBsb3Qgc2hvd2luZyB0aGUgbnVtYmVyIG9mIGNvdW50cmllcyBpbmNsdWRlZCBpbiB0aGUKZGF0YXNldCBmcm9tIGVhY2ggYFJlZ2lvbmAuCjEuIFJvdGF0ZSB0aGUgcGxvdCBzbyB0aGUgYmFycyBhcmUgaG9yaXpvbnRhbAoKCiMgRXhlcmNpc2UgMzogRGlzdHJpYnV0aW9uIG9mIGNvbnRpbnVvdXMgdmFyaWFibGVzCgoxLiBDcmVhdGUgYm94cGxvdHMgb2YgU0VEQSBzY29yZXMsIGBTRURBLkN1cnJlbnQubGV2ZWxgIHNlcGFyYXRlbHkgCmZvciBlYWNoIGBSZWdpb25gLgoxLiBPdmVybGF5IHBvaW50cyBvbiB0b3Agb2YgdGhlIGJveCBwbG90cwoxLiBUaGUgcG9pbnRzIHlvdSBhZGRlZCBhcmUgb24gdG9wIG9mIGVhY2ggb3RoZXIsIGluIG9yZGVyIHRvIGRpc3Rpbmd1aXNoIAp0aGVtIGppdHRlciBlYWNoIHBvaW50IGJ5IGEgbGl0dGxlIGJpdCBpbiB0aGUgaG9yaXpvbnRhbCBkaXJlY3Rpb24uCjEuIE5vdyBzdWJzdGl0dXRlIHlvdXIgYm94cGxvdCB3aXRoIGEgdmlvbGluIHBsb3QuCgo=